Partial Fractions Paths to Shortcuts

1. An Example with the Standard Algebra

Let

$$
f(x)=\frac{x^{2}+1}{x^{3}-5 x^{2}+8 x-4} .
$$

The roots of $q(x)$, the denominator, are 1 and 2^{*}. Maple's partial fraction decomposition ${ }^{\dagger}$ of f is

$$
f(x)=\frac{2}{x-1}+\frac{-1}{x-2}+\frac{5}{(x-2)^{2}} \quad \text { giving } \quad \int f(x) d x=2 \ln (x-1)-\ln (x-2)-\frac{5}{x-2} .
$$

1. The denominator factors as $(x-1) \cdot(x-2)^{2}$, so the form of our partial fraction decomposition of $f(x)$ is

$$
\frac{x^{2}+1}{x^{3}-5 x^{2}+8 x-4}=\frac{A}{x-1}+\frac{B_{1}}{x-2}+\frac{B_{2}}{(x-2)^{2}}
$$

2. Multiply both sides by the denominator to clear fractions. Collect like terms to find

$$
\begin{aligned}
x^{2}+1 & =A(x-2)^{2}+B_{1}(x-1)(x-2)+B_{2}(x-1) \\
& =\left(A+B_{1}\right) x^{2}+\left(-4 A-3 B_{1}+B_{2}\right) x+\left(4 A+2 B_{1}-B_{2}\right)
\end{aligned}
$$

3. Generate a system of equations by matching the coefficients on the right with those on the left.

$$
\begin{aligned}
A+B_{1} & =1 & & \text { (coefficients of } x^{2} \text {) } \\
-4 A-3 B_{1}+B_{2} & =0 & & \text { (coefficients of } x) \\
4 A+2 B_{1}-B_{2} & =1 & & \text { (the constants) }
\end{aligned}
$$

Solve the system using your favourite method to see $A=2, B_{1}=-1$, and $B_{2}=5$.

Whence

$$
\frac{x^{2}+1}{x^{3}-5 x^{2}+8 x-4}=\frac{2}{x-1}+\frac{-1}{x-2}+\frac{5}{(x-2)^{2}}
$$

Now integration is easy.

$$
\begin{aligned}
\int \frac{x^{2}+1}{x^{3}-5 x^{2}+8 x-4} d x & =2 \ln (x-1)-\ln (x-2)-\frac{5}{x-2}+C \\
& =\ln \left(\frac{(x-1)^{2}}{x-2}\right)-\frac{5}{x-2}+C
\end{aligned}
$$

And so are Laplace transforms.

$$
\begin{aligned}
\mathscr{L}^{-1}\left[\frac{s^{2}+1}{s^{3}-5 s^{2}+8 s-4}\right](t) & =\mathscr{L}^{-1}\left[\frac{2}{s-1}\right](t)+\mathscr{L}^{-1}\left[\frac{-1}{s-2}\right](t)+\mathscr{L}^{-1}\left[\frac{5}{(s-2)^{2}}\right](t) \\
& =2 e^{t}-e^{2 t}+5 t e^{2 t}
\end{aligned}
$$

[^0]
2. An Example with Clever Algebra

Again, let

$$
f(x)=\frac{x^{2}+1}{x^{3}-5 x^{2}+8 x-4}=\frac{A}{x-1}+\frac{B_{1}}{x-2}+\frac{B_{2}}{(x-2)^{2}} .
$$

The roots of $q(x)$, the denominator, are still 1 and 2 .
Consider the following computations.

1. For $x=1$: Look at $f_{1}(x)=(x-1) \times f(x)$.

$$
\begin{aligned}
f_{1}(x) & =\frac{(x-1)\left(x^{2}+1\right)}{x^{3}-5 x^{2}+8 x-4}=\frac{(x-1)\left(x^{2}+1\right)}{(x-1)(x-2)^{2}} \\
& =\frac{x^{2}+1}{(x-2)^{2}}
\end{aligned}
$$

$$
f_{1}(1) \rightarrow 2=A \quad\left(\text { Equivalent to } \lim _{x \rightarrow 1}[(x-1) f(x)] .\right)
$$

2. For $x=2$. Look at $f_{2}(x)=(x-2) \times f(x)$.

$$
\begin{aligned}
f_{2}(x) & =\frac{(x-2)\left(x^{2}+1\right)}{x^{3}-5 x^{2}+8 x-4}=\frac{(x-2)\left(x^{2}+1\right)}{(x-1)(x-2)^{2}} \\
& =\frac{x^{2}+1}{(x-1)(x-2)} \\
f_{2}(2) & \rightarrow \frac{5}{0} \quad \text { undefined! }
\end{aligned}
$$

This technique can't find the coefficient in $B_{1} /(x-2)$.
3. Look at $f_{3}(x)=(x-2)^{2} \times f(x)$.

$$
\begin{aligned}
f_{3}(x) & =\frac{(x-2)^{2}\left(x^{2}+1\right)}{x^{3}-5 x^{2}+8 x-4}=\frac{(x-2)^{2}\left(x^{2}+1\right)}{(x-1)(x-2)^{2}} \\
& =\frac{x^{2}+1}{(x-1)} \\
f_{2}(2) & \rightarrow 5=B_{2}
\end{aligned}
$$

In words:

- Factor the denominator.
- Successively multiply both sides by each factor, reducing the fraction each time.
- Set x to the value that makes the factor equal to zero.
- Evaluate to find the partial fraction coefficient for that factor.
- Use standard algebra (systems of linear equations) to find the coefficients for any 'lower power terms'.

3. Generically with Calculus

Suppose $f(x)=p(x) / q(x)$ where p and q are polynomials with no common factors. Let r be a root of q, and let $(x-r)^{n}$ be the highest power of $(x-r)$ that divides q; i.e., r is a root of q with multiplicity n.

Suppose the highest power n for some root r is 1 ; that is, suppose r is a simple root. Then

$$
\begin{aligned}
(x-r)^{1} f(x) & =(x-r)^{1} \frac{p(x)}{q(x)} \\
& =\frac{p(x)}{\frac{q(x)}{x-r}}=\frac{p(x)}{\frac{q(x)-q(r)}{x-r}} \quad(\text { since } q(r)=0)
\end{aligned}
$$

Take the limit of both sides as $x \rightarrow r$.

$$
\lim _{x \rightarrow r}(x-r) f(x)=\lim _{x \rightarrow r} \frac{p(x)}{\frac{q(x)-q(r)}{x-r}}=\frac{\lim _{x \rightarrow r} p(x)}{\lim _{x \rightarrow r} \frac{q(x)-q(r)}{x-r}}=\frac{p(r)}{q^{\prime}(r)}
$$

Revisit the previous example where

$$
p(x)=x^{2}+1 \quad \text { and } \quad q(x)=x^{3}-5 x^{2}+8 x-4=(x-1)(x-2)^{2} .
$$

So

$$
p(x)=x^{2}+1 \quad \text { and } \quad q^{\prime}(x)=3 x^{2}-10 x+8, q^{\prime \prime}(x)=6 x-10
$$

1. Then

$$
\frac{p(1)}{q^{\prime}(1)}=\frac{2}{1}=2=A
$$

2. Try

$$
\frac{p(2)}{q^{\prime}(2)}=\frac{5}{0} \quad \text { undefined }
$$

3. Try

$$
\frac{p(2)}{q^{\prime \prime}(2) / 2!}=\frac{5}{2 / 2}=5=B_{2}
$$

In words:

- Find the roots of the denominator and their multiplicities (powers).
- Differentiate the denominator as needed.
- For a root r of multiplicity n, compute the partial fraction coefficient for $\frac{A}{(x-r)^{n}}$ with $A=n!\times \frac{p(r)}{q^{(n)}(r)}$.
- Use algebra to find the coefficients for 'lower power terms.'

It would take a lot of work, but we could show that the coefficient in $\frac{A_{i}}{(x-r)^{i}}$ is given by

$$
A_{i}=\frac{h^{(n-i)}(r)}{(n-i)!} \quad \text { for } i=1 . . n
$$

where $h(x)=\left[(x-r)^{n} \times \frac{p(x)}{q(x)}\right]$ and $h^{(0)}(x)=h(x) . \quad$ So B_{1} from above would be $B_{1}=h^{\prime}(2) / 1!=-1$.

[^0]: * Recall the Rational Root Theorem:

 Suppose $g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has a factor $(x-r)$ for some rational number r. Then $r= \pm\left(\right.$ factor of $\left.a_{0}\right) /\left(\right.$ factor of $\left.a_{n}\right)$.
 ${ }^{\dagger}$ From: convert (f(x), parfrac).

