Mat 3130	Quiz 4	NAME:
FALL'13	Form [ast	Email ID:

Work quickly and carefully, following directions closely. Answer all questions completely.

FOR ALL PROBLEMS: Define P, Q, R, and S to be the four digits in your given number.

$$
P=\ldots, \quad Q=\ldots, \quad R=\ldots, \quad S=\ldots .
$$

§I. TRUE and/or FALSE. Circle your answer. There are 2 questions at 2 points each.

1. TruE or FALSE: Euler's method is a 'predictor-corrector' numerical method.
2. TRUE or FALSE: The Runge-Kutta method is based on $\left\{\begin{array}{ll}\text { Simpson's Rule of integration } & (P \text { is even }) \\ \text { the Trapezoid Rule of integration } & (P \text { is odd })\end{array}\right.$.
§II. Multiple Choice. Circle your answer. There are 2 question at 5 points each.
3. The order of the Runge-Kutta numerical method we studied is
(a) $\mathscr{O}(h)$
(b) $\mathscr{O}\left(h^{2}\right)$
(c) $\mathscr{O}\left(h^{3}\right)$
(c) $\mathscr{O}\left(h^{4}\right)$
4. For Heun's method, the new y value is $y+\Delta y$ where Δy is given by:
(a) $\Delta y=f(t, y) \cdot h$
(b) $\Delta y=\frac{1}{2}\left(m_{L}+m_{R}\right) h$
(c) $\Delta y=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h$
(d) none of the above
(e) all of the above
§III. Problems. You must show your work to receive credit. There are 3 problems at 10 points each.
5. Suppose that the overall error in using Heun's method on $y^{\prime}=f(t, y)$ is $\varepsilon \leq 10^{-3}$ for a given stepsize h. What stepsize h do we need to use to achieve an error of $\varepsilon \leq 10^{-6}$?

FOR ALL PROBLEMS: Define P, Q, R, and S to be the four digits in your given number.

$$
P=_, \quad Q=\ldots, \quad R=\ldots, \quad S=\ldots
$$

2. Consider the initial value problem $y^{\prime \prime}-P y^{\prime}+Q y=0$ with $y(0)=R$ and $y^{\prime}(0)=S$. Do one step of Euler's method to find $y_{1} \approx y(0.1)$ using a stepsize $h=0.1$.
3. Why would an applied mathematician use a numerical method instead of just solving an initial value problem symbolically to get an exact solution?
