Mat 3130	Test 2	NAME:	
Fall '13	Form II	EMAIL ID:	_

Work quickly and carefully, following directions closely. Answer all questions completely.

FOR ALL PROBLEMS: Define P, Q, R, and S to be the four digits in your given number.

 $P = \underline{\qquad}, \qquad Q = \underline{\qquad}, \qquad R = \underline{\qquad}, \qquad S = \underline{\qquad}.$

§I. TRUE and/or FALSE. Circle your answer. There are 3 questions at 2 points each.

- 1. TRUE or FALSE: The origin is the only equilibrium point for any linear system.
- 2. TRUE or FALSE: The x- and y-nullclines of a nonlinear system cannot intersect.
- 3. TRUE or FALSE: The value of the improper integral $\int_0^\infty \delta(t-R) e^{-t} dt$ (where *R* is your number) is e^{-R} .

 Π . Multiple Choice. Circle your answer. There are 2 question at 5 points each.

1. The *eigenvalues* for the system $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & P \\ 0 & Q \end{bmatrix}$ (where *P* and *Q* are your numbers) are $\lambda =$ (a) 1 and 0 (b) *P* and *Q* (c) *P* and 0 (d) 1 and *Q*

2. Linearizing the differential equation
$$\begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} x^2 + \sin(x) \\ y - \sin(xy) \end{bmatrix}$$
 at the origin gives $\frac{d}{dt}\vec{V} = \mathbf{A}\cdot\vec{V}$ with \mathbf{A} equal to:
(a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

§III. MATCHING. Four functions y(t) and twelve functions Y(s) are given below. For each function y(t), match it with its Laplace transform Y(s). There are 4 matches at 3 points each.

$y = e^{2t}\cos(2t)$	$y = e^{2t} - e^{-2t}$	$y = \sin(t - \pi)$	y = u(t -	$(-2) \cdot e^{3t-6}$
<i>Y</i> =	Y =	Y =	Y =	
I. $Y = \frac{4}{s^2 - 4}$	II.	$Y = \frac{4}{s^2 + 4}$	III.	$Y = \frac{2}{s^2 + 4}$
IV. $Y = \frac{2s}{s^2 + 4}$	V.	$Y = \frac{s}{s^2 - 4}$	VI.	$Y = \frac{-1}{s^2 + 1}$
VII. $Y = \frac{s}{s^2 + 4}$	VIII.	$Y = \frac{e^{-2s}}{s+3}$	IX.	$Y = \frac{e^{-2s}}{s-3}$
$X. Y = \frac{s}{s^2 - 4s + 8}$	XI.	$Y = \frac{s-2}{s^2 - 4s + 8}$	XII.	$Y = \frac{e^{-\pi s}}{s^2 + 1}$

Go on to the next page.

FOR ALL PROBLEMS: Define P, Q, R, and S to be the four digits in your given number.

 $P = \underline{\qquad}, \qquad Q = \underline{\qquad}, \qquad R = \underline{\qquad}, \qquad S = \underline{\qquad}.$

§IV. PROBLEMS. You must show your work to receive credit. There are 4 problems at 20 points each.

1. The linear differential system $\frac{d}{dt}\vec{Y} = \mathbf{A}\cdot\vec{Y}$ has eigenvalues $\lambda_1 = (-1)^P$ and $\lambda_2 = (-\frac{1}{2})^Q$ (where *P* and *Q* are your numbers). Determine what type of equilibrium the origin is.

- 2. Consider the differential equation x''(t) + x'(t) + Rx(t) = 0 with x(0) = 1 and x'(0) = 1. (*R* is your number.)
 - (a) Convert the differential equation to a system of two variables x and v.
 - (b) Determine the type of equilibrium of the system at the origin.

FOR ALL PROBLEMS: Define P, Q, R, and S to be the four digits in your given number.

$$P = \underline{\qquad}, \qquad Q = \underline{\qquad}, \qquad R = \underline{\qquad}, \qquad S = \underline{\qquad}.$$

3. Find the inverse Laplace transform of the function $F(s) = e^{-Qs} \cdot \frac{3!}{s^4}$ where Q is your number.

4. Use Laplace transforms to solve the initial value problem $\frac{d^4x}{dt^4} - x = 4$ with x'''(0) = x''(0) = x(0) = 0.