MAT 3130	Test 2	NAME:
FALL'13	Form II	EMAIL ID:

Work quickly and carefully, following directions closely. Answer all questions completely.
For all problems: Define P, Q, R, and S to be the four digits in your given number.

$$
P=\ldots, \quad Q=\ldots, \quad R=\ldots, \quad S=
$$

§I. True and/or False. Circle your answer. There are 3 questions at 2 points each.

1. TRUE or FALSE: The origin is the only equilibrium point for any linear system.
2. TRUE or FALSE: The x - and y-nullclines of a nonlinear system cannot intersect.
3. True or False: The value of the improper integral $\int_{0}^{\infty} \delta(t-R) e^{-t} d t$ (where R is your number) is e^{-R}.
§II. Multiple Choice. Circle your answer. There are 2 question at 5 points each.
4. The eigenvalues for the system $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}1 & P \\ 0 & Q\end{array}\right]$ (where P and Q are your numbers) are $\lambda=$
(a) 1 and 0
(b) P and Q
(c) P and 0
(d) 1 and Q
5. Linearizing the differential equation $\left[\begin{array}{l}x^{\prime}(t) \\ y^{\prime}(t)\end{array}\right]=\left[\begin{array}{l}x^{2}+\sin (x) \\ y-\sin (x y)\end{array}\right]$ at the origin gives $\frac{d}{d t} \vec{V}=\mathbf{A} \cdot \vec{V}$ with \mathbf{A} equal to:
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
§III. Matching. Four functions $y(t)$ and twelve functions $Y(s)$ are given below. For each function $y(t)$, match it with its Laplace transform $Y(s)$. There are 4 matches at 3 points each.

$$
\begin{array}{llll}
y=e^{2 t} \cos (2 t) & y=e^{2 t}-e^{-2 t} & y=\sin (t-\pi) & y=u(t-2) \cdot e^{3 t-6} \\
Y=\square & Y=\square & Y=\square & Y=\square
\end{array}
$$

I. $\quad Y=\frac{4}{s^{2}-4}$
II. $\quad Y=\frac{4}{s^{2}+4}$
III. $\quad Y=\frac{2}{s^{2}+4}$
IV. $Y=\frac{2 s}{s^{2}+4}$
V. $Y=\frac{s}{s^{2}-4}$
VI. $\quad Y=\frac{-1}{s^{2}+1}$
VII. $\quad Y=\frac{s}{s^{2}+4}$
VIII. $\quad Y=\frac{e^{-2 s}}{s+3}$
IX. $\quad Y=\frac{e^{-2 s}}{s-3}$
X. $\quad Y=\frac{s}{s^{2}-4 s+8}$
XI. $\quad Y=\frac{s-2}{s^{2}-4 s+8}$
XII. $\quad Y=\frac{e^{-\pi s}}{s^{2}+1}$

Go on to the next page.

For all problems: Define P, Q, R, and S to be the four digits in your given number.

$$
P=_, \quad Q=_, \quad R=_, \quad S=\ldots
$$

§IV. Problems. You must show your work to receive credit. There are 4 problems at 20 points each.

1. The linear differential system $\frac{d}{d t} \vec{Y}=\mathbf{A} \cdot \vec{Y}$ has eigenvalues $\lambda_{1}=(-1)^{P}$ and $\lambda_{2}=\left(-\frac{1}{2}\right)^{Q}$ (where P and Q are your numbers). Determine what type of equilibrium the origin is.
2. Consider the differential equation $x^{\prime \prime}(t)+x^{\prime}(t)+R x(t)=0$ with $x(0)=1$ and $x^{\prime}(0)=1$. (R is your number.)
(a) Convert the differential equation to a system of two variables x and v.
(b) Determine the type of equilibrium of the system at the origin.

For all problems: Define P, Q, R, and S to be the four digits in your given number.

$$
P=\ldots, \quad Q=\ldots, \quad R=\ldots, \quad S=
$$

3. Find the inverse Laplace transform of the function $F(s)=e^{-Q s} \cdot \frac{3!}{s^{4}}$ where Q is your number.
4. Use Laplace transforms to solve the initial value problem $\frac{d^{4} x}{d t^{4}}-x=4$ with $x^{\prime \prime \prime}(0)=x^{\prime \prime}(0)=x^{\prime}(0)=x(0)=0$.
