Graphing Slopefields with Maple

Setup

The DEtools package has DEplot to graph slopefields (and differential equations in general) . with (DEtools, DEplot);

$$
\begin{equation*}
[\text { DEplot }] \tag{1.1}
\end{equation*}
$$

? DEplot

Simple Slope Field Example

Define a simple differential equation. Then use DEplot to graph the slopefield.
$d e:=S^{\prime}(t)=6-\frac{S(t)}{10}$

$$
\begin{equation*}
d e:=\mathrm{D}(S)(t)=6-\frac{S(t)}{10} \tag{2.1}
\end{equation*}
$$

	$\operatorname{DEplot}(\operatorname{de},[S], t=0 . .30, S=0 . .100$, dirgrid $=[14,10])$ $S(t)$

- Adding Solution Curves

We can add solution curves to theplot by specifying initial conditions in a list.
InitCond $:=[[S(0)=10],[S(0)=40],[S(0)=60],[S(0)=80],[S(0)=100]]$ InitCond $:=[[S(0)=10],[S(0)=40],[S(0)=60],[S(0)=80],[S(0)=100]]$
$\operatorname{DEplot}(\operatorname{de},[S], t=0 . .30, S=0 . .100$, InitCond, linecolor $=$ black $)$

Follow the Curves

Watch the plot develop...
$\operatorname{DEplot}(\operatorname{de},[S], t=0 . .30, S=0 . .100,[[S(0)=10],[S(0)=80]]$, animatecurves $=$ true, linecolor = black)

Analytic Solution to an IVP

The function dsolve is a variant of solve that finds solutions when possible.
dsolve $(\{d e, S(0)=10\}, S(t))$

$$
\begin{equation*}
S(t)=60-50 \mathrm{e}^{-\frac{t}{10}} \tag{5.1}
\end{equation*}
$$

dsolve $[$ interactive $]($ de $)$

