
MAT 4310: 1

Newton’s Method Error Bound

Theorem (Newton1–Raphson Method2 (1711))

Suppose f has 2 continuous derivatives on a neighborhood B of a root r.
Set xn+1 = xn− f (xn)/ f ′(xn) and let x0 ∈ B(r,δ ). Then xn→ r and

|r− xn+1| ≤ cδ |r− xn|2 ;

that is, “xn converges to r quadratically.”

Further,

cδ =
1
2
·

max
x∈B(r,δ )

| f ′′(x)|

min
x∈B(r,δ )

| f ′(x)|

1In De analysi per aequationes numero terminorum infinitas (written 1669,
pub. 1711). The ‘derivative version’ is due to Simpson (1740). See History.

2The basis of the method goes back to Vieta (1600); even earlier works were
similar: al-Kasha (1427) and al-Biruni (c. 1000).

http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Newton.html
http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Raphson.html
http://en.wikipedia.org/wiki/De_analysi_per_aequationes_numero_terminorum_infinitas
http://en.citizendium.org/wiki/Newton%27s_method#History
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MAT 4310: 2

Proving the Error Bound

Proof (sketch).

1. Set εn = r− xn.

Then

εn+1 = r−

xn+1︷ ︸︸ ︷[
xn−

f (xn)

f ′(xn)

]
= εn +

f (xn)

f ′(xn)

=
εn f ′(xn)+ f (xn)

f ′(xn)
(1)

2. By Taylor’s thm (with a = xn and h = εn):

0 = f (r) = f (xn + εn) = f (xn)+ f ′(xn)εn +
1
2 f ′′(ξn)ε

2
n

So
f (xn)+ f ′(xn)εn =− 1

2 f ′′(ξn)ε
2
n (2)

3. Put (2) into (1), then maximize the expression.1

1Implicitly assumes r is a simple root! Why?
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MAT 4310: 3

Multiple Roots

Accelerating Convergence for Multiple Roots

If r is a root of multiplicity m, then set

xn+1 = xn−m · f (xn)

f ′(xn)

Note: A root r of f has multiplicity m iff{
f (k)(r) = 0 0≤ k < m
f (m)(r) 6= 0

Try: f (x) = x6−6x5 +15x4−20x3 +15x2−6x+1 with r = 1.
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