Taylor's Theorem

Theorem (Taylor's Theorem ${ }^{1}$ (1715 \{first in a 1712 letter\}))

Suppose f has $(n+1)$ continuous derivatives on a neighborhood of c. Then $f(x)=T_{n}(x)+E_{n+1}$ where

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

and ${ }^{2}$

$$
E_{n+1}=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!}(x-c)^{n+1}
$$

${ }^{1}$ Actually, discovered by Gregory in $1671 \sim 14$ years before Taylor was born!
${ }^{2}$ The Lagrange form of the remainder from Théorie des fonctions analytiques,

Taylor's Theorem

Theorem (Taylor's Theorem ${ }^{1}$ (1715 \{first in a 1712 letter\}))

Suppose f has $(n+1)$ continuous derivatives on a neighborhood of c. Then $f(x)=T_{n}(x)+E_{n+1}$ where

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

and ${ }^{2}$

$$
E_{n+1}=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!}(x-c)^{n+1}=O\left((x-c)^{n+1}\right)
$$

${ }^{1}$ Actually, discovered by Gregory in $1671 \sim 14$ years before Taylor was born!
${ }^{2}$ The Lagrange form of the remainder from Théorie des fonctions analytiques,

Taylor's Theorem

Theorem (Taylor's Theorem ${ }^{1}$ (1715 \{first in a 1712 letter\}))

Suppose f has $(n+1)$ continuous derivatives on a neighborhood of c. Then $f(x)=T_{n}(x)+E_{n+1}$ where

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

$a n d^{2}$

$$
E_{n+1}=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!}(x-c)^{n+1}=O\left((x-c)^{n+1}\right)
$$

for some ξ_{x} (depending on x) between c and x; or

$$
\left|E_{n+1}\right| \leq \frac{1}{(n+1)!} \cdot M_{n+1} \cdot|x-c|^{n+1}
$$

where $M_{n+1} \geq \max _{t \in N(c, x)}\left|f^{(n+1)}(t)\right|$.

[^0]
Proving Taylor's Theorem

Proof ${ }^{1}$ (sketch).

1. The F ToC $\Longrightarrow f(x)=f(c)+\int_{0}^{x-c} f^{\prime}(x-t) d t$.

Proving Taylor's Theorem

Proof ${ }^{1}$ (sketch).

1. The $F T O C \Longrightarrow f(x)=f(c)+\int_{0}^{x-c} f^{\prime}(x-t) d t$.
2. Integrate by parts with $u=f^{\prime}(x-t)$ and $d v=d t$:

Proving Taylor's Theorem

Proof ${ }^{1}$ (sketch).

1. The $F T O C \Longrightarrow f(x)=f(c)+\int_{0}^{x-c} f^{\prime}(x-t) d t$.
2. Integrate by parts with $u=f^{\prime}(x-t)$ and $d v=d t$:

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\int_{0}^{x-c} f^{\prime \prime}(x-t) \cdot t d t
$$

Proving Taylor's Theorem

Proof ${ }^{1}$ (sketch).

1. The $F T O C \Longrightarrow f(x)=f(c)+\int_{0}^{x-c} f^{\prime}(x-t) d t$.
2. Integrate by parts with $u=f^{\prime}(x-t)$ and $d v=d t$:

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\int_{0}^{x-c} f^{\prime \prime}(x-t) \cdot t d t
$$

3. Repeatedly integrate by parts with $u=f^{(k)}(x-t) ; d v=\frac{1}{(k-1)!} t^{k-1} d t$ to find:
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+E_{n+1}$
where

$$
E_{n+1}=\frac{1}{n!} \int_{0}^{x-c} f^{(n+1)}(x-t) \cdot t^{n} d t
$$

Proving Taylor's Theorem

Proof ${ }^{1}$ (sketch).

1. The $F T O C \Longrightarrow f(x)=f(c)+\int_{0}^{x-c} f^{\prime}(x-t) d t$.
2. Integrate by parts with $u=f^{\prime}(x-t)$ and $d v=d t$:

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\int_{0}^{x-c} f^{\prime \prime}(x-t) \cdot t d t
$$

3. Repeatedly integrate by parts with $u=f^{(k)}(x-t) ; d v=\frac{1}{(k-1)!} t^{k-1} d t$ to find:
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+E_{n+1}$
where

$$
E_{n+1}=\frac{1}{n!} \int_{0}^{x-c} f^{(n+1)}(x-t) \cdot t^{n} d t
$$

4. Apply the First Mean Value Theorem for Integrals to finish.

Taylor's Theorem, Alternate Version

Theorem (Taylor's Theorem for $(c+h)$)

Suppose f has $(n+1)$ continuous derivatives on a neighborhood of c. Then $f(c+h)=T_{n}(c+h)+E_{n+1}$ where

$$
T_{n}(c+h)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} h^{k}
$$

and

$$
\begin{aligned}
E_{n+1} & =\frac{f^{(n+1)}\left(\xi_{n}\right)}{(n+1)!} h^{n+1}=O\left(h^{n+1}\right) \\
\left|E_{n+1}\right| & \leq \frac{M_{n+1}}{(n+1)!} \cdot|h|^{n+1}
\end{aligned}
$$

for some ξ_{h} (depends on h) between $c \& c+h$ and $M_{n+1} \geq \max _{t \in N}\left|f^{(n+1)}(t)\right|$.

Alternate Forms of the Remainder

Forms of the Remainder ${ }^{2}$

Lagrange (1797):

$$
R_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}\left(c_{x}\right)(x-a)^{n+1}
$$

for some c_{x} between x and a.

Cauchy (1821):

$$
R_{n}(x)=\frac{1}{n!} f^{(n+1)}\left(c_{x}\right)(x-a)(x-c)^{n}
$$

for some c_{x} between x and a.

Integral Form:

$$
R_{n}(x)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

Uniform Estimate:

$$
R_{n}(x)=\max _{x \in B}\left|f^{(n+1)}(x)\right| \cdot \frac{r^{n+1}}{(n+1)!}
$$

for all x in $B=B(a, r)$
${ }^{2}$ See, e.g., Whitaker \& Watson, A Course of Modern Analysis, Cambridge, 1927. Also see Schlömilch remainder.

[^0]: ${ }^{1}$ Actually, discovered by Gregory in $1671 \sim 14$ years before Taylor was born!
 ${ }^{2}$ The Lagrange form of the remainder from Théorie des fonctions analytiques,

