Taylor's Theorem
Theorem (Taylor's Theorem! (1715 {first in a 1712 letter}) )

Suppose f has (n+ 1) continuous derivatives on a neighborhood of c.
Then f(x) = T,(x) + E,11 where

and?

L Actually, discovered by Gregory in 1671 ~ 14 years before Taylor was born!
°The Lagrange form of the remainder from Théorie des fonctions analytiques,
1813 edition.
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Proving Taylor's Theorem
Proof ! (sketch).

1. The FToC = f(x) = f(c)+ OX7}'(x—t)dt.

v
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4. Apply the First Mean Value Theorem for Integrals to finish. 0
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1See Taylor's proof.
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Taylor's Theorem, Alternate Version

Theorem (Taylor's Theorem for (c+h) )

Suppose f has (n+ 1) continuous derivatives on a neighborhood of c.

Then f(c+h) =T,(c+h)+E,+1 where

n
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Alternate Forms of the Remainder

Forms of the Remainder?

Lagrange (1797): R, (x) = FO D (c) (x—a)H!

(n+1)!
for some ¢, between x and a.

Cauchy (1821): R, (x) = %f(”“)(cx) (x—a)(x—c)"

for some ¢, between x and a.

1 X
Integral Form: Ry(x) = = / FON @) (x—1)" dt
Uniform Estimate: Ry(x) = max ’f (x)’ SEFEyY

for all x in B=B(a,r)

2Gee, e.g., Whitaker & Watson, A Course of Modern Analysis, Cambridge, 1927.
Also see Schlomilch remainder.
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