Mat 4310	Test 1	NAME:
Spring '13	Form A	Email:

Work quickly and carefully, following directions closely. Answer all questions completely.

- §I. TRUE and/or FALSE. Circle your answer. There are 3 questions at 2 points each.
 - 1. TRUE or FALSE: The values x = 1,000 and y = 3.141 have the same number of *significant digits*.
 - 2. TRUE or FALSE: Lagrange's Remainder for a Taylor polynomial of degree n centered at c is

$$R_{n+1} = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) (x-c)^{n+1}$$

where ξ_x is some value between *x* and *c*.

3. TRUE or FALSE: Let s be a Python list. The Python statements s.reverse() and s[-1::-1] are essentially equivalent.

§II. MULTIPLE CHOICE. Circle your answer. There are 3 question at 5 points each.

1. The best choice form for evaluating $r_{-} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ when $ac \approx 0$ is

(a)
$$r_{-} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 (b) $r_{-} = -\frac{b}{2a} - \sqrt{\frac{b^2}{4a^2} - \frac{c}{a}}$ (c) $r_{-} = \frac{4ac}{-b + \sqrt{b^2 - 4ac}}$

(d) none of the above

(e) all of the above

- 2. Suppose that s = range(14). Then s[-1:2:-3] returns
 - (a) [13,10,7,4] (b) [2,5,8,11] (c) []
 - (d) none of the above (e) all of the above
- 3. For an arbitrary differentiable function *f*:
 - (a) Newton's method must always find a root.
 - (b) The secant method must always find a root.
 - (c) If Newton's method fails, then the secant method must also fail.
 - (d) none of the above are true.
 - (e) all of (a), (b), and (c) above are true.

§III. PROBLEMS. You must show your work to receive credit. There are 5 problems at 15 points each.

1. Describe Gauss-Kronrod quadrature and how the method's error is estimated.

2. Describe *Romberg integration*; state how the method is calculated.

3. Write the Heaviside function
$$H(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$
 in Python.

4. Convert the Maple procedure below to a Python function.

Maple	Python
Maple 1 EulerStep := proc(yp,x,y,h,n) 2 # yp: f'(x,y); h:Delta_x; n: num steps 3 local x0, x1, y0, y1, i; 4 x0 := x; 5 y0 := y; 6 for i to n do 7 x1 := x0 + h; 8 y1 := y0 + yp(x0,y0)*h; 9 := x1; 10 y0 := y1; 11 end do; 12 return([x0,y0])	Python

5. The *Intermediate Value Theorem* shows that $f(x) = x^3 + x - 1$ has a root between x = 0 and x = 1. Find an inequality for the error ε_{n+1} in terms of ε_n and the constant $c(\delta)$ [give a specific value for $c(\delta)$] for using *Newton's method* to find the root of the function.