| MAT 4310 | Test 1 | NAME: |
| :--- | :---: | :---: |
| Spring ${ }^{\prime} 13$ | Form A | EMAIL: |

Work quickly and carefully, following directions closely. Answer all questions completely.
§I. True and/or False. Circle your answer. There are 3 questions at 2 points each.

1. True or False: The values $x=1,000$ and $y=3.141$ have the same number of significant digits.
2. TRUE or FALSE: Lagrange's Remainder for a Taylor polynomial of degree $n$ centered at $c$ is

$$
R_{n+1}=\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right)(x-c)^{n+1}
$$

where $\xi_{x}$ is some value between $x$ and $c$.
3. True or False: Let s be a Python list. The Python statements s.reverse() and s $[-1::-1]$ are essentially equivalent.
§II. Multiple Choice. Circle your answer. There are 3 question at 5 points each.

1. The best choice form for evaluating $r_{-}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ when $a c \approx 0$ is
(a) $r_{-}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
(b) $r_{-}=-\frac{b}{2 a}-\sqrt{\frac{b^{2}}{4 a^{2}}-\frac{c}{a}}$
(c) $r_{-}=\frac{4 a c}{-b+\sqrt{b^{2}-4 a c}}$
(d) none of the above
(e) all of the above
2. Suppose that $s=$ range (14). Then $s[-1: 2:-3]$ returns
(a) $[13,10,7,4]$
(b) $[2,5,8,11]$
(c) []
(d) none of the above
(e) all of the above
3. For an arbitrary differentiable function $f$ :
(a) Newton's method must always find a root.
(b) The secant method must always find a root.
(c) If Newton's method fails, then the secant method must also fail.
(d) none of the above are true.
(e) all of (a), (b), and (c) above are true.
§III. Problems. You must show your work to receive credit. There are 5 problems at 15 points each.
4. Describe Gauss-Kronrod quadrature and how the method's error is estimated.
5. Describe Romberg integration; state how the method is calculated.
6. Write the Heaviside function $H(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x<0\end{array}\right.$ in Python.
7. Convert the Maple procedure below to a Python function.

| Maple | Python |
| :--- | :--- | :--- |

5. The Intermediate Value Theorem shows that $f(x)=x^{3}+x-1$ has a root between $x=0$ and $x=1$. Find an inequality for the error $\varepsilon_{n+1}$ in terms of $\varepsilon_{n}$ and the constant $c(\boldsymbol{\delta})$ [give a specific value for $c(\boldsymbol{\delta})$ ] for using Newton's method to find the root of the function.
