MAT 4310	Test 2	NAME:
SPRING '13	Form T	EmAIL:

Work quickly and carefully, following directions closely. Answer all questions completely.
§I. True and/or False. Circle your answer. There are 3 questions at 2 points each.

1. True or False: The Taylor method of order 4 is equivalent to a Runge-Kutta fourth order method.
2. TRUE or FALSE: Gaussian elimination is a method of finding derivatives of high-order polynomials.
3. True or False: Partial pivoting is used to optimize a matrix method of solving systems of linear equations.
§II. Multiple Choice. Circle your answer. There are 3 question at 5 points each.
4. Set $z_{0}=f\left(x_{0}, y_{0}\right)$. The second order Taylor series for a function of two variables $f(x, y)$ is
(a) $T(x, y)=z_{0}+f_{x y}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right) \cdot\left(y-y_{0}\right)$
(b) $T(x, y)=z_{0}+\left[f_{x}\left(x_{0}, y_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\right] \cdot\left(x-x_{0}\right)\left(y-y_{0}\right)+\left[f_{x x}\left(x_{0}, y_{0}\right)+f_{y y}\left(x_{0}, y_{0}\right)\right] \cdot\left(x-x_{0}\right)^{2}\left(y-y_{0}\right)^{2}$
(c) $T(x, y)=z_{0}+f_{x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right)+f_{x x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)\left(y-y_{0}\right)$ $+f_{y y}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right)^{2}$
(d) none of the above.
5. Euler's method will always converge to a unique solution for any differential equation:
(a) given a small enough stepsize.
(b) given a differential equation that has a closed-form-formula as its solution.
(c) given the parameters are all rational numbers.
(d) None of the above.
(e) All of the above are true.
6. An adaptive solver for a differential equation:
(a) must always find a root.
(b) changes the differential equation from a high order to a system of first order equations.
(c) changes the parameters/variables from rational numbers to floating point.
(d) changes the stepsize in a numeric routine to increase accuracy.
(e) All of the above are true.
§III. Problems. You must show your work to receive credit. There are 3 problems at 20 points each.
7. Using Gaussian elimination with partial pivoting, showing all steps, to solve the system

$$
\begin{aligned}
x_{1}+\frac{1}{2} x_{2}+\frac{1}{3} x_{3}+\frac{1}{4} x_{4} & =1 \\
\frac{1}{2} x_{1}+\frac{1}{3} x_{2}+\frac{1}{4} x_{3}+\frac{1}{5} x_{4} & =0 \\
\frac{1}{3} x_{1}+\frac{1}{4} x_{2}+\frac{1}{5} x_{3}+\frac{1}{6} x_{4} & =0 \\
\frac{1}{4} x_{1}+\frac{1}{5} x_{2}+\frac{1}{6} x_{3}+\frac{1}{7} x_{4} & =0
\end{aligned}
$$

2. A model for fluid draining from a box has the differential equation (see the J. of Engineering Math. 79:1, pp 91-99):

$$
z^{\prime \prime \prime}=\frac{3}{z^{2}}-\frac{2}{z^{3}}
$$

(a) Explain whether or not there must be a unique solution in a neighborhood of
i. $t=0$.
ii. $t=1$.
iii. $t=2$.
(b) Convert this DE to a system of first order differential equations.
3. Define the $I V P$

$$
\left\{\begin{array}{l}
y^{\prime}=5 \cdot y \cdot(1-y)+5 \cdot U(5-x) \\
y(0)=0
\end{array}\right.
$$

where the Heaviside function U is given by $U(z)= \begin{cases}1 & z \geq 0 \\ 0 & z<0\end{cases}$
(a) Use a second order Taylor method to determine $y(15)$ with stepsizes 2^{-k} for $k=2,3,4$. Plot your results.
(b) Use an RK45 method to determine $y(15)$ with stepsizes 2^{-k} for $k=2,3,4$ giving error estimates. Plot your results.
(c) Compare your answers from (a) and (b).

