Intro to Linear Algebra MAT 5230, §101

Wm C Bauldry Autumn Semester, 2005 **Definition 1** A Group is a pair $\{X; \cdot\}$ such that

- 1. " \cdot " is closed on X.
- 2. " \cdot " is associative on X.
- *3. There is an identity* $e \in X$ (*w.r.t.* "·").

4. Every element $a \in X$ has an inverse a^{-1} (w.r.t. "·").

Definition 2 A Ring is a triple $\{X; +, \cdot\}$ such that

- 1. $\{X;+\}$ is an Abelian group.
- 2. $\{X; \cdot\}$ is a semigroup (lacks identity and inverses).

3. " \cdot " distributes over "+".

Definition 3 A Field is a triple $\{X; +, \cdot\}$ such that 1. $\{X; +, \cdot\}$ is a ring.

2. $\{X^{\#}; \cdot\}$ is an Abelian group where $X^{\#} = X - \{0\}$.

Definition 4 *A* Vector Space *is an Abelian group* $\{X;+\}$ *over a field* $\{F;+,\cdot\}$ *with a* scalar product $F \times X \to X$. For $\alpha, \beta \in F$ and $x, y \in X$,

1.
$$\alpha(x+y) = \alpha x + \alpha y$$

$$2. \ (\alpha + \beta)x = \alpha x + \beta x$$

3. $(\alpha\beta)x = \alpha(\beta x)$

4.
$$1x = x$$

Field

Definition 3 (Field) Let $F \neq \emptyset$ be a set with addition "+": $X \times X \to X$ and multiplication "·": $F \times X \to X$. Then $\{F; +, \cdot\}$ with the operations forms a field if the following axioms are satisfied:

1. $x + y = y + x, x \cdot y = y \cdot x$ commutative laws2. $x + (y + z) = (x + y) + z, x \cdot (y \cdot z) = (x \cdot y) \cdot z$ associative laws3. There is a unique element 0 satisfying 0 + x = xadditive identity4. To each $x, \exists a$ unique -x such that x + (-x) = 0additive inverse5. There is a unique element 1 satisfying $1 \cdot x = x$ mult. identity6. To each $x \neq 0, \exists a$ unique x^{-1} such that $x \cdot x^{-1} = 1$ mult. inverse7. $x \cdot (y + z) = x \cdot y + x \cdot z$ "·" over "+" distributive law

Examples of Fields

- 1. \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields.
- 2. \mathbb{Z} is not a field. (Why?)
- 3. Let p be a prime. Then \mathbb{Z}_p is a p-element field.
- 4. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.
- 5. $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ is not a field. (Why?)
- 6. $\mathbb{Q}[\sqrt[3]{3}] = \{a + b\sqrt[3]{3} + c\sqrt[3]{3^2} \mid a, b, c \in \mathbb{Q}\}$ is a field.
- 7. $\mathbb{Z}_p[i]$, p is prime, is a field (with p^2 elements).

Vector Space

6. $(\alpha\beta)x = \alpha(\beta x)$

Definition 4 (Vector Space) Let $X \neq \emptyset$ be a set (vectors) and F be a field (scalars) with vector addition "+": $X \times X \rightarrow X$ and scalar multiplication " \cdot ": $F \times X \to X$. Then X and F with the operations forms a vector space (or linear space), "X is a vector space over F," if the following axioms are satisfied:

l.
$$x + y = y + x$$
 commutative law

2.
$$x + (y + z) = (x + y) + z$$
 associative law

There is a unique vector 0 satisfying 0 + x = x'zero vector,' identity 3. 4. $\alpha(x+y) = \alpha x + \alpha y$ scalar "·" over vector "+" distributive law 5. $(\alpha + \beta)x = \alpha x + \beta x$

scalar "+" over scalar "." distributive law

scalar homogeneity

7. 0x = 0scalar-vector additive identity relation (*implied by 5.*) 8. 1x = xscalar-vector multiplicative identity relation

Examples of Vector Spaces

- 1. Let $n \in \mathbb{Z}^+$. Then \mathbb{Q}^n , \mathbb{R}^n , and \mathbb{C}^n are vector spaces.
- 2. Let $n \in \mathbb{Z}^+$. Then \mathbb{P}^n , the polynomials (real or complex) of degree less than or equal to n, forms a vector space.
- 3. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is a vector space.
- 4. Let F be a field and $n \in \mathbb{Z}^+$. Then F^n is a vector space.
- 5. Let $M_{m \times n}$ be the $m \times n$ matrices with entries in a field F with componentwise addition and scalar multiplication.
- 6. Let $K \subseteq \mathbb{R}$ be a closed interval. Then C(K), the continuous real-valued functions on K form a vector space.
- 7. Let $O \subseteq \mathbb{R}$ be an open interval. Then $C^1(O)$, the continuously differentiable real-valued functions on O form a vector space.

Definition 5 (Group Homomorphism) Let $\{X; +_X\}$ and $\{Y; +_Y\}$ be two groups with $\rho : X \to Y$. Then ρ is a homomorphism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$

Definition 6 (Ring Homomorphism) Let $\{X; +_X, \cdot_X\}$ and $\{Y; +_Y, \cdot_Y\}$ be two rings with $\rho : X \to Y$. Then ρ is a homomorphism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$
$$\rho(x_1 \cdot x_2) = \rho(x_1) \cdot \rho(x_2)$$

Vector Space Homomorphism

Definition 7 (Linear Transformation) Let X and Y be vector spaces over the same field F. Then the relation $\rho: X \to Y$ is a linear transformation if and only if for every $\alpha \in F$ and $x_1, x_2 \in X$, it follows that:

(1)
$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$

(2)
$$\rho(\alpha \cdot x_1) = \alpha \cdot \rho(x_1)$$

Linear Transformation

$$\begin{array}{ccc} [x_1, x_2] & \xrightarrow{+} & x_1 + x_2 \\ \rho \downarrow & \rho \downarrow \\ [\rho(x_1), \rho(x_2)] & \xrightarrow{+} & \rho(x_1 + x_2) = \\ & \rho(x_1) + \rho(x_2) \end{array}$$

$$\begin{array}{ccc} [\alpha, x_1] & \xrightarrow{\cdot} & \alpha \cdot x_1 \\ \rho \downarrow & & \rho \downarrow \\ [\alpha, \rho(x_1)] & \xrightarrow{\cdot} & \rho(\alpha \cdot x_1) = \\ & \alpha \cdot \rho(x_1) \end{array}$$

(2)

(1)