Intro to Linear Algebra MAT 5230, §101

Wm C Bauldry
Autumn Semester, 2005

Algebraic Structures

Definition 1 A Group is a pair $\{X ; \cdot\}$ such that

1. "." is closed on X.
2. "." is associative on X.
3. There is an identity $e \in X$ (w.r.t. ".").
4. Every element $a \in X$ has an inverse a^{-1} (w.r.t. ".").

Definition $2 A$ Ring is a triple $\{X ;+, \cdot\}$ such that

1. $\{X ;+\}$ is an Abelian group.
2. $\{X ; \cdot\}$ is a semigroup (lacks identity and inverses).
3. "." distributes over "+".

Algebraic Structures

Definition 3 A Field is a triple $\{X ;+, \cdot\}$ such that 1. $\{X ;+, \cdot\}$ is a ring.
2. $\left\{X^{\#} ; \cdot\right\}$ is an Abelian group where $X^{\#}=X-\{0\}$.

Definition 4 A Vector Space is an Abelian group
$\{X ;+\}$ over a field $\{F ;+, \cdot\}$ with a scalar product $F \times X \rightarrow X$. For $\alpha, \beta \in F$ and $x, y \in X$,

1. $\alpha(x+y)=\alpha x+\alpha y$
2. $(\alpha+\beta) x=\alpha x+\beta x$
3. $(\alpha \beta) x=\alpha(\beta x)$
4. $1 x=x$

Field

Definition 3 (Field) Let $F \neq \emptyset$ be a set with addition " + ": $X \times X \rightarrow X$ and multiplication ".": $F \times X \rightarrow X$. Then $\{F ;+, \cdot\}$ with the operations forms a field if the following axioms are satisfied:

1. $x+y=y+x, x \cdot y=y \cdot x$
commutative laws
2. $x+(y+z)=(x+y)+z, x \cdot(y \cdot z)=(x \cdot y) \cdot z$ associative laws
3. There is a unique element 0 satisfying $0+x=x \quad$ additive identity
4. To each x, \exists a unique $-x$ such that $x+(-x)=0 \quad$ additive inverse
5. There is a unique element 1 satisfying $1 \cdot x=x \quad$ mult. identity
6. To each $x \neq 0, \exists$ a unique x^{-1} such that $x \cdot x^{-1}=1 \quad$ mult. inverse
7. $x \cdot(y+z)=x \cdot y+x \cdot z \quad$ "." over "+" distributive law

Examples of Fields

1. \mathbb{Q}, \mathbb{R}, and \mathbb{C} are fields.
2. \mathbb{Z} is not a field. (Why?)
3. Let p be a prime. Then \mathbb{Z}_{p} is a p-element field.
4. $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.
5. $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ is not a field. (Why?)
6. $\mathbb{Q}[\sqrt[3]{3}]=\left\{a+b \sqrt[3]{3}+c \sqrt[3]{3^{2}} \mid a, b, c \in \mathbb{Q}\right\}$ is a field.
7. $\mathbb{Z}_{p}[i], p$ is prime, is a field (with p^{2} elements).

Vector Space

Definition 4 (Vector Space) Let $X \neq \emptyset$ be a set (vectors) and F be a field (scalars) with vector addition " + ": $X \times X \rightarrow X$ and scalar multiplication ".": $F \times X \rightarrow X$. Then X and F with the operations forms a vector space (or linear space), " X is a vector space over F," if the following axioms are satisfied:

1. $x+y=y+x$ commutative law
2. $x+(y+z)=(x+y)+z$ associative law
3. There is a unique vector 0 satisfying $0+x=x \quad$ 'zero vector,' identity
4. $\alpha(x+y)=\alpha x+\alpha y$
5. $(\alpha+\beta) x=\alpha x+\beta x$
6. $(\alpha \beta) x=\alpha(\beta x)$
7. $0 x=0$
8. $1 x=x$
scalar "." over vector "+" distributive law scalar "+" over scalar "." distributive law scalar homogeneity scalar-vector multiplicative identity relation

Examples of Vector Spaces

1. Let $n \in \mathbb{Z}^{+}$. Then $\mathbb{Q}^{n}, \mathbb{R}^{n}$, and \mathbb{C}^{n} are vector spaces.
2. Let $n \in \mathbb{Z}^{+}$. Then \mathbb{P}^{n}, the polynomials (real or complex) of degree less than or equal to n, forms a vector space.
3. $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a vector space.
4. Let F be a field and $n \in \mathbb{Z}^{+}$. Then F^{n} is a vector space.
5. Let $M_{m \times n}$ be the $m \times n$ matrices with entries in a field F with componentwise addition and scalar multiplication.
6. Let $K \subseteq \mathbb{R}$ be a closed interval. Then $C(K)$, the continuous real-valued functions on K form a vector space.
7. Let $O \subseteq \mathbb{R}$ be an open interval. Then $C^{1}(O)$, the continuously differentiable real-valued functions on O form a vector space.

Homomorphisms

Definition 5 (Group Homomorphism) Let $\left\{X ;+_{X}\right\}$

 and $\left\{Y ;+_{Y}\right\}$ be two groups with $\rho: X \rightarrow Y$. Then ρ is a homomorpism iff$$
\rho\left(x_{1}+{ }_{X} x_{2}\right)=\rho\left(x_{1}\right)+_{Y} \rho\left(x_{2}\right)
$$

Definition 6 (Ring Homomorphism) Let $\left\{X ;+_{X}, \cdot{ }_{X}\right\}$ and $\left\{Y ;+_{Y}, \cdot{ }^{\prime}\right\}$ be two rings with $\rho: X \rightarrow Y$. Then ρ is a homomorpism iff

$$
\begin{aligned}
\rho\left(x_{1}+X x_{2}\right) & =\rho\left(x_{1}\right)+_{Y} \rho\left(x_{2}\right) \\
\rho\left(x_{1} \cdot X x_{2}\right) & =\rho\left(x_{1}\right) \cdot Y \rho\left(x_{2}\right)
\end{aligned}
$$

Vector Space Homomorphism

Definition 7 (Linear Transformation) Let X and Y be vector spaces over the same field F. Then the relation $\rho: X \rightarrow Y$ is a linear transformation if and only if for every $\alpha \in F$ and $x_{1}, x_{2} \in X$, it follows that:

$$
\begin{equation*}
\rho\left(x_{1}+{ }_{X} x_{2}\right)=\rho\left(x_{1}\right)+_{Y} \rho\left(x_{2}\right) \tag{1}
\end{equation*}
$$

(2)

$$
\rho\left(\alpha \cdot x_{1}\right)=\alpha \cdot \rho\left(x_{1}\right)
$$

Linear Transformation

(1)

$$
\left.\begin{array}{ccc}
{\left[x_{1}, x_{2}\right]} & & + \\
x_{1}+x_{2} \\
\rho \downarrow & & \rho \downarrow \\
{\left[\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right]} & & + \\
\rho\left(x_{1}+x_{2}\right)= \\
\rho\left(x_{1}\right)+\rho\left(x_{2}\right)
\end{array}\right] \begin{array}{ccc}
\\
{\left[\alpha, x_{1}\right]} & & \cdots \\
\rho \downarrow & & \alpha \cdot x_{1} \\
{\left[\alpha, \rho\left(x_{1}\right)\right]} & & \cdots \\
& & \alpha \cdot \rho\left(x_{1}\right)
\end{array}
$$

