## **Properties of Finite Fields**

**Theorem 1**  $\mathbb{Z}_p$  is a field if and only if p is prime.

**Theorem 2** Let p be a prime and  $n \in \mathbb{Z}^+$ . Then there exists a finite field F with  $p^n$  elements.

**Theorem 3** For any prime p and  $n \in \mathbb{Z}^+$ , there is (essentially) only one field with  $p^n$  elements. (The splitting field of  $x^{p^n} - x$  over the field  $\mathbb{Z}_p$ .)

## References

- *Elementary Modern Algebra*, R Thompson, Scott, Foresman, & Co.
- *Modern Algebra: A First Course*, H Hollister, Harper & Row.
- *Introduction to Modern Algebra*, H McCoy, Allyn and Bacon.
- Modern Algebra, F Ayers, Schaum's Outline Series, McGraw-Hill.
- *Basic Algebra I*, N Jacobson, Freeman.
- http://mathworld.wolfram.com/FiniteField.html
- http://www-math.cudenver.edu/~wcherowi/courses/finfids.html