Properties of Vector Spaces

Theorem 1 Let *X* be a vector space over the field *F*. Let $x, y, z \in X$ and $\alpha, \beta \in F$. Then

1. if
$$\alpha x = \alpha y$$
 and $\alpha \neq 0$, then $x = y$;

- 2. if $\alpha x = \beta x$ and $x \neq 0$, then $\alpha = \beta$;
- 3. if x + y = x + z, then y = z;

4. $\alpha \cdot 0 = 0$;

- 5. $\alpha(x-y) = \alpha x \alpha y$ where $-y \stackrel{\Delta}{=} (-1) \cdot y$;
- 6. $(\alpha \beta)x = \alpha x \beta x;$
- 7. x + y = 0 implies that x = -y.

More Examples of Vector Spaces

Sequence Vector Spaces

- Finitely non-zero real (or complex) sequences
- Null real (or complex) sequences
- Bounded real (or complex) sequences
- Convergent real (or complex) sequences

Function Vector Spaces

- $\mathbb{P} = \{ polynomials with real (or complex) coefficients \}$
- $C([a,b]) = \{f \mid f : [a,b] \to \mathbb{R} \text{ is continuous} \} \text{ over } \mathbb{R}$

$$L_1([a,b]) = \{ f \mid \int_a^b |f(t)| \, dt < \infty \} \text{ over } \mathbb{R}$$