Properties of Vector Spaces

Theorem 1 Let X be a vector space over the field F. Let $x, y, z \in X$ and $\alpha, \beta \in F$. Then

1. if $\alpha x=\alpha y$ and $\alpha \neq 0$, then $x=y$;
2. if $\alpha x=\beta x$ and $x \neq 0$, then $\alpha=\beta$;
3. if $x+y=x+z$, then $y=z$;
4. $\alpha \cdot 0=0$;
5. $\alpha(x-y)=\alpha x-\alpha y$ where $-y \triangleq(-1) \cdot y$;
6. $(\alpha-\beta) x=\alpha x-\beta x$;
7. $x+y=0$ implies that $x=-y$.

More Examples of Vector Spaces

Sequence Vector Spaces

- \mathbb{R}^{∞} and \mathbb{C}^{∞}
- Finitely non-zero real (or complex) sequences
- Null real (or complex) sequences
- Bounded real (or complex) sequences
- Convergent real (or complex) sequences

Function Vector Spaces

- $\mathbb{P}=$ \{polynomials with real (or complex) coefficients $\}$
- $C([a, b])=\{f \mid f:[a, b] \rightarrow \mathbb{R}$ is continuous $\}$ over \mathbb{R}
- $L_{1}([a, b])=\left\{f\left|\int_{a}^{b}\right| f(t) \mid d t<\infty\right\}$ over \mathbb{R}

