Subspace of a Vector Space

Definition 1 (Subspace) Let *X* be a vector space over *F* and let $\emptyset \neq V \subseteq X$. Then *V* is a subspace of *X* iff

1. $\forall u, v \in V$, we have $u + v \in V$ (closed under addition)

2. $\forall \alpha \in F, \forall u \in V, we have \alpha u \in V$ (closed under scalar mult.)

Theorem 1 A subspace of a vector space is itself a vector space. *Proof.* Let *V* be a subspace of *X*. *V* is closed under vector addition and scalar multiplication by definition. All remaining vector space properties — with the exception of $0 \in V$ — are inherited from *X*. Let $v \in V$ (because $V \neq \emptyset$). Since $0 \in F$, then $0v = 0 \in V$. Thus *V* is a vector space. \Box *Note.* Every vector space has at least 2 subspaces. What are they?

Examples of Subspaces

- $\{0\}$ and X are always subspaces of X
- \mathbb{R}^2 is a subspace^a of \mathbb{R}^3 , \mathbb{C}^2 is a subspace of \mathbb{C}^3 .
- For m < n, we have that \mathbb{R}^m is a subspace of \mathbb{R}^n
- For m < n, we have that \mathbb{P}^m is a subspace of \mathbb{P}^n
- 🥒 Is
 - $V_1 = \{(x, 1) \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^2 ?
 - $V_2 = \{(x, y, x + y, 0) \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^4 ?
 - $V_3 = \{(x, y, x + y + 2, 0) \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^4 ?

^{*a*} Thinking of \mathbb{R}^2 as a subset such as $\{(x, y, 0) | x, y \in \mathbb{R}\}$, &c., of \mathbb{R}^3 . Formally, \mathbb{R}^2 is isomorphic to a subspace of \mathbb{R}^3 .