Subspace of a Vector Space

Definition 1 (Subspace) Let X be a vector space over F and let $\emptyset \neq V \subseteq X$. Then V is a subspace of X iff

1. $\forall u, v \in V$, we have $u+v \in V$
(closed under addition)
2. $\forall \alpha \in F, \forall u \in V$, we have $\alpha u \in V \quad$ (closed under scalar mult.)

Theorem 1 A subspace of a vector space is itself a vector space. Proof. Let V be a subspace of $X . V$ is closed under vector addition and scalar multiplication by definition. All remaining vector space properties - with the exception of $0 \in V$ - are inherited from X. Let $v \in V$ (because $V \neq \emptyset$). Since $0 \in F$, then $0 v=0 \in V$. Thus V is a vector space. \square
Note. Every vector space has at least 2 subspaces. What are they?

Examples of Subspaces

- $\{0\}$ and X are always subspaces of X
- \mathbb{R}^{2} is a subspace ${ }^{2}$ of $\mathbb{R}^{3}, \mathbb{C}^{2}$ is a subspace of \mathbb{C}^{3}.
- For $m<n$, we have that \mathbb{R}^{m} is a subspace of \mathbb{R}^{n}
- For $m<n$, we have that \mathbb{P}^{m} is a subspace of \mathbb{P}^{n}
- Is
- $V_{1}=\{(x, 1) \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^{2} ?
- $V_{2}=\{(x, y, x+y, 0) \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^{4} ?
- $V_{3}=\{(x, y, x+y+2,0) \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^{4} ?
${ }^{\text {a }}$ Thinking of \mathbb{R}^{2} as a subset such as $\{(x, y, 0) \mid x, y \in \mathbb{R}\}$, \&c., of \mathbb{R}^{3}. Formally, \mathbb{R}^{2} is isomorphic to a subspace of \mathbb{R}^{3}.

