Operations with Subspaces

Theorem 1 Let *X* be a vector space over *F* and let V_1 and V_2 be subspaces of *X*. Then $V = V_1 \cap V_2$ is a subspace.

Pf. (Exercise.)

Theorem 2 Let *X* be a vector space over *F* and let X_i for $i \in I$ be subspaces of *X* where *I* is some index set. Then $V = \bigcap_{i \in I} X_i$ is a subspace.

Pf. (Easy closure calculations.)

NB: Unions (usually) or complements of subspaces do not form new subspaces.

Direct Sum

Definition 1 (Direct Sum) Let $X_1, X_2, ..., X_r$ be subspaces of X. The set $X_1 + X_2 + \cdots + X_r$ forms the direct sum $X_1 \oplus X_2 \oplus \cdots \oplus X_r$ iff for every x in the sum, there is a unique set of $x_i \in X_i$ such that $x = \sum_{i=1}^r x_i$.

Theorem 3 $X_1 + X_2 = X_1 \oplus X_2$ if and only if $X_1 \cap X_2 = \{0\}$.

Pf. Based on: Let $0 \neq v \in X_1 \cap X_2$. Then v = v + 0 = 0 + v is two different ways to write v.

Note. $X_1 + X_2$ is a subspace; $X_1 \oplus X_2$ is a subspace that 'looks like' a direct product.

Subspaces of \mathbb{R}^2 and \mathbb{R}^3

Example 1 Set $X = \mathbb{R}^2$. Let X_1 be given by the line y = x and X_2 by the line y = -x. Then

 $\{0\} = X_1 \cap X_2 \subseteq X_1 \cup X_2 \subseteq X_1 + X_2 = X_1 \oplus X_2 = \mathbb{R}^2$ subsp \neg subsp subsp

Example 2 Set $X = \mathbb{R}^3$. The subspaces of \mathbb{R}^3 are:

- **9** {0}
- **•** A line *L* through the origin.
- The direct sum of two distinct lines through the origin $L_1 \oplus L_2$ yields a plane.
- The direct sum of three distinct non-coplanar lines through the origin $L_1 \oplus L_2 \oplus L_3$ yields \mathbb{R}^3 .