## Operations with Subspaces

Theorem 1 Let $X$ be a vector space over $F$ and let $V_{1}$ and $V_{2}$ be subspaces of $X$. Then $V=V_{1} \cap V_{2}$ is a subspace.

Pf. (Exercise.)
Theorem 2 Let $X$ be a vector space over $F$ and let $X_{i}$ for $i \in I$ be subspaces of $X$ where $I$ is some index set. Then
$V=\bigcap_{i \in I} X_{i}$ is a subspace.
Pf. (Easy closure calculations.)
NB: Unions (usually) or complements of subspaces do not form new subspaces.

## Direct Sum

Definition 1 (Direct Sum) Let $X_{1}, X_{2}, \ldots, X_{r}$ be subspaces of $X$. The set $X_{1}+X_{2}+\cdots+X_{r}$ forms the direct sum $X_{1} \oplus X_{2} \oplus \cdots \oplus X_{r}$ iff for every $x$ in the sum, there is a unique set of $x_{i} \in X_{i}$ such that $x=\sum_{i=1}^{r} x_{i}$.

Theorem $3 X_{1}+X_{2}=X_{1} \oplus X_{2}$ if and only if $X_{1} \cap X_{2}=\{0\}$.
Pf. Based on: Let $0 \neq v \in X_{1} \cap X_{2}$. Then $v=v+0=0+v$ is two different ways to write $v$.

Note. $X_{1}+X_{2}$ is a subspace; $X_{1} \oplus X_{2}$ is a subspace that 'looks like’ a direct product.

## Subspaces of $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$

Example 1 Set $X=\mathbb{R}^{2}$. Let $X_{1}$ be given by the line $y=x$ and $X_{2}$ by the line $y=-x$. Then

$$
\begin{array}{cc}
\{0\}=X_{1} \cap X_{2} & \subseteq \\
\text { subsp } & \begin{array}{l}
X_{1} \cup X_{2} \\
\neg \text { subsp }
\end{array} \subseteq \begin{array}{c}
X_{1}+X_{2} \\
\text { subsp }
\end{array}=X_{1} \oplus X_{2}=\mathbb{R}^{2} \\
\hline
\end{array}
$$

Example 2 Set $X=\mathbb{R}^{3}$. The subspaces of $\mathbb{R}^{3}$ are:

- $\{0\}$
- A line $L$ through the origin.
- The direct sum of two distinct lines through the origin $L_{1} \oplus L_{2}$ yields a plane.
- The direct sum of three distinct non-coplanar lines through the origin $L_{1} \oplus L_{2} \oplus L_{3}$ yields $\mathbb{R}^{3}$.

