Linear Combinations

Note: From now on, α_i , etc., will be elements of the base field *F* and x_i, y_i , etc., will be vectors from the space *X*.

Definition 1 (Finite Linear Combination) Let $Y \subseteq X$. A vector $x \in X$ is a (finite) linear combination of vectors in Y iff there is a finite set of vectors $\{y_i\} \subseteq Y$ and scalars $\{\alpha_i\}$ such that

$$x = \sum_{i=1}^{n} \alpha_i \, y_i$$

Note: The sum is not required to be unique. (Unlike \oplus .)

Example 1 Let $Y = \{(1,0), (1,1), (0,1)\} \subset \mathbb{R}^2$. Then the vector x = (2,3) can be written as x = 2(1,0) + 3(0,1) or as x = 2(1,1) + 1(0,1) or as x = -1(1,0) + 3(1,1).

Generated Subspace & Span

Theorem 1 Let $\emptyset \neq Y \subseteq X$. Define

 $V(Y) \stackrel{\Delta}{=} \{ all \ linear \ combinations \ from \ Y \}.$

Then V(Y) is a subspace of X and is called the subspace generated by Y.

Definition 2 (Span) *Y* spans *X* if and only if V(Y) = X.

Example 2 Let $Y = \{(1,0), (1,1), (0,1)\}$. Then Y spans \mathbb{R}^2 . *(Exercise.)*

Example 3 Let $Z = \{(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\}$. Does the set Z span \mathbb{R}^3 ?

Dependence and Independence

Definition 3 (Linear Dependence) Let $\{x_1, x_2, ..., x_m\}$ be a nonempty subset of *X*. If there exists a set of scalars $\{\alpha_i\}$, not all zero, such that $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_m x_m = 0$, then $\{x_1, x_2, ..., x_m\}$ is linearly dependent.

Definition 4 (Linear Independence) *If the nonempty subset* $\{x_1, x_2, ..., x_m\}$ *of* X *is not linearly dependent, then* $\{x_1, x_2, ..., x_m\}$ *is* linearly independent.

Example 4 *Y* and *Z* from the previous examples are both linearly dependent.

Example 5 Let $W = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$. Then W is *linearly independent.*

More Examples

Example 6 Let $V = \{(1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)\}$. Is *V* linearly independent? Does *V* span \mathbb{R}^4 ?

Example 7 Let $U = \{(0, 0, 0), (1, 0, 0), (0, 1, 0)\}$. Is U linearly independent?

Example 8 Let $\mathcal{P} = \{1, x, x^2, x^3, ...\}$. Then $V(\mathcal{P}) = \mathbb{P}$, the set of all real polynomials; i.e., \mathcal{P} spans \mathbb{P} . Is \mathcal{P} linearly independent? Yes! But how do we show this? Consider

$$p(x) = \sum_{i=0}^{n} \alpha_i x_i = 0$$

and note that the only *n*th degree polynomial with n + 1 roots, is $p(x) \equiv 0$.