Linear Combinations

Note: From now on, α_{i}, etc., will be elements of the base field F and x_{i}, y_{i}, etc., will be vectors from the space X.
Definition 1 (Finite Linear Combination) Let $Y \subseteq X$. A vector $x \in X$ is a (finite) linear combination of vectors in Y iff there is a finite set of vectors $\left\{y_{i}\right\} \subseteq Y$ and scalars $\left\{\alpha_{i}\right\}$ such that

$$
x=\sum_{i=1}^{n} \alpha_{i} y_{i}
$$

Note: The sum is not required to be unique. (Unlike \oplus.)
Example 1 Let $Y=\{(1,0),(1,1),(0,1)\} \subset \mathbb{R}^{2}$. Then the vector $x=(2,3)$ can be written as $x=2(1,0)+3(0,1)$ or as $x=2(1,1)+1(0,1)$ or as $x=-1(1,0)+3(1,1)$.

Generated Subspace \& Span

Theorem 1 Let $\emptyset \neq Y \subseteq X$. Define

$$
V(Y) \triangleq\{\text { all linear combinations from } Y\} .
$$

Then $V(Y)$ is a subspace of X and is called the subspace generated by Y.

Definition 2 (Span) Y spans X if and only if $V(Y)=X$.
Example 2 Let $Y=\{(1,0),(1,1),(0,1)\}$. Then Y spans \mathbb{R}^{2}. (Exercise.)

Example 3 Let $Z=\{(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$. Does the set Z span \mathbb{R}^{3} ?

Dependence and Independence

Definition 3 (Linear Dependence) Let $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a nonempty subset of X. If there exists a set of scalars $\left\{\alpha_{i}\right\}$, not all zero, such that $\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{m} x_{m}=0$, then $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is linearly dependent.

Definition 4 (Linear Independence) If the nonempty subset $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of X is not linearly dependent, then $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is linearly independent.

Example $4 Y$ and Z from the previous examples are both linearly dependent.

Example 5 Let $W=\{(1,1,0),(1,0,1),(0,1,1)\}$. Then W is linearly independent.

More Examples

Example 6 Let $V=\{(1,1,0,0),(1,0,1,0),(1,1,1,0)\}$. Is V linearly independent? Does V span \mathbb{R}^{4} ?

Example 7 Let $U=\{(0,0,0),(1,0,0),(0,1,0)\}$. Is U linearly independent?

Example 8 Let $\mathcal{P}=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$. Then $V(\mathcal{P})=\mathbb{P}$, the set of all real polynomials; i.e., \mathcal{P} spans \mathbb{P}. Is \mathcal{P} linearly independent? Yes! But how do we show this? Consider

$$
p(x)=\sum_{i=0}^{n} \alpha_{i} x_{i}=0
$$

and note that the only nth degree polynomial with $n+1$ roots, is $p(x) \equiv 0$.

