Linear Independence

Theorem 1 (Uniqueness) Let $Y=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a linearly independent set of vectors. If $\sum_{i=1}^{m} \alpha_{i} x_{i}=\sum_{i=1}^{m} \beta_{i} x_{i}$, then $\alpha_{i}=\beta_{i}$ for $i=1$..m.
Pf. Simple calculation.
Theorem 2 A set Y is linearly dependent if and only if some vector $x \in Y$ can be written as a linear combination of other vectors in Y.

- Add any number of vectors to a dependent set, it will still be dependent.
- Add one vector to an independent set, it may or may not stay independent.

Infinite Example

Example 1 Let $\mathcal{P}=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$. Then $V(\mathcal{P})=\mathbb{P}$, the set of all real polynomials; i.e., \mathcal{P} spans \mathbb{P}. Is \mathcal{P} linearly independent? Yes! But how do we show this? Let $p(x) \in \mathbb{P}$. Then, for some n,

$$
p(x)=\sum_{i=0}^{n} \alpha_{i} x_{i}=0 .
$$

Note that the only nth degree polynomial with $n+1$ roots, is $p(x) \equiv 0$. Hence all α_{i} are 0 .

Unique Expression

Theorem 3 (Uniqueness of Expression) A finite nonempty set Y is linearly independent if and only if, for each nonzero $y \in V(Y)$, there exists a unique subset $\left\{x_{1}, \ldots, x_{m}\right\}$ of Y and a unique set of scalars $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ such that $y=\sum_{i=1}^{m} \alpha_{i} x_{i}$.

Assignment:

1. Prove Theorem 2
2. Prove Theorem 3

Theorem $4 Y$ is linearly independent if and only if $Z \subsetneq Y$ implies $V(Z) \neq V(Y)$.
Pf. Exercise.

Basis of a Vector Space

Definition 1 (Hamel Basis) A (finite) set $Y \subseteq X$ is a Hamel basis (or just a basis) if and only if

1. Y is linearly independent
2. $V(Y)=X$

Id est, Y is a (finite) linearly independent spanning set.
Theorem 5 If Y is linearly independent, then Y is a basis for $V(Y)$.
Pf. Exercise.
Note: The theorem Every vector space has a basis is a result of the Axiom of Choice.

