Linear Independence

Theorem 1 (Uniqueness) Let $Y = \{x_1, x_2, ..., x_m\}$ be a linearly independent set of vectors. If $\sum_{i=1}^{m} \alpha_i x_i = \sum_{i=1}^{m} \beta_i x_i$, then $\alpha_i = \beta_i$ for i = 1..m. **Pf.** Simple calculation.

Theorem 2 A set *Y* is linearly dependent if and only if some vector $x \in Y$ can be written as a linear combination of other vectors in *Y*.

- Add any number of vectors to a dependent set, it will still be dependent.
- Add one vector to an independent set, it may or may not stay independent.

Infinite Example

Example 1 Let $\mathcal{P} = \{1, x, x^2, x^3, ...\}$. Then $V(\mathcal{P}) = \mathbb{P}$, the set of all real polynomials; i.e., \mathcal{P} spans \mathbb{P} . Is \mathcal{P} linearly independent? Yes! But how do we show this? Let $p(x) \in \mathbb{P}$. Then, for some n,

$$p(x) = \sum_{i=0}^{n} \alpha_i x_i = 0.$$

Note that the only *n*th degree polynomial with n + 1 roots, is $p(x) \equiv 0$. Hence all α_i are 0.

Unique Expression

Theorem 3 (Uniqueness of Expression) A finite nonempty set *Y* is linearly independent if and only if, for each nonzero $y \in V(Y)$, there exists a unique subset $\{x_1, \ldots, x_m\}$ of *Y* and a unique set of scalars $\{\alpha_1, \ldots, \alpha_m\}$ such that $y = \sum_{i=1}^m \alpha_i x_i$.

Assignment:

- 1. Prove Theorem 2
- 2. Prove Theorem 3

Theorem 4 *Y* is linearly independent if and only if $Z \subsetneq Y$ implies $V(Z) \neq V(Y)$.

Pf. Exercise.

Basis of a Vector Space

Definition 1 (Hamel Basis) A (finite) set $Y \subseteq X$ is a Hamel basis (or just a basis) if and only if

1. *Y* is linearly independent

2. V(Y) = X

Id est, Y is a (finite) linearly independent spanning set.

Theorem 5 If *Y* is linearly independent, then *Y* is a basis for V(Y).

Pf. Exercise.

Note: The theorem *Every vector space has a basis* is a result of the *Axiom of Choice*.