Basis of a Vector Space

Recall:

Definition 1 (Hamel Basis) A set $Y \subseteq X$ is a Hamel basis (or just a basis) if and only if

1. Y is linearly independent
2. $V(Y)=X$

Note: The theorem «Every vector space has a basis» is a result of the Axiom of Choice.

Exempli gratia

- $\{(0,1),(1,2)\}$ is a basis of \mathbb{R}^{2}
- $\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis of \mathbb{R}^{3}
- $\{(1,1,0),(1,2,0),(2,1,0)\}$ is not a basis of \mathbb{R}^{3}

Basis Properties

Theorem 1 (Uniqueness of Scalars) Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a basis for X. Then for each vector $x \in X$, there is a unique set of scalars $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ such that

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}
$$

Pf. Standard calculation.
Theorem 2 (Maximum Independent Set Size) Suppose that $B=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis of X with n finite and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ is a set of linearly independent vectors. Then $m \leq n$.

Note: n is finite is necessary.

Proof of Theorem 2-Outline

Proof Outline.

1. Assume $m>n$.
2. Write y_{1} as a linear combination of the x_{i}. At least one coefficient can't be 0 , say the coefficient of x_{n} (reindex x 's if necessary).
3. Replace x_{n} in B with y_{1}. Show B still is a basis for X.
4. Start over with y_{2} and the "new" B. Replace x_{n-1} by y_{2}.
5. Continue the process until y_{n} replaces x_{1}.
6. B-still a basis - now is $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.
7. Thus y_{n+1} can be written as as linear combination from B contradicting the linear independence of Y. Hence $m \leq n$.

Dimension

Theorem 3 If $B=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ is a basis of X for some $N<\infty$, then every basis of X contains exactly N vectors.
Pf. - Let B_{1} be a basis with n vectors and B_{2} be a basis with m vectors.

- Apply Theorem 2 with B_{1} as the basis and B_{2} as the linearly independent set. Therefore $m \leq n$.
- Now apply Theorem 2 with B_{2} as the basis and B_{1} as the linearly independent set. Therefore $n \leq m$.
- Since $m \leq n$ and $n \leq m$, it follows that $m=n$.

