Basis of a Vector Space

Recall:

Definition 1 (Hamel Basis) A set $Y \subseteq X$ is a Hamel basis (or just a basis) if and only if

- 1. Y is linearly independent
- **2.** V(Y) = X

Note: The theorem *«Every vector space has a basis»* is a result of the *Axiom of Choice*.

Exempli gratia

- ${\ \ }$ $\left\{(0,1),(1,2)
 ight\}$ is a basis of \mathbb{R}^2
- $\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis of \mathbb{R}^3
- ${\scriptstyle {\small \checkmark}}$ $\left\{(1,1,0),(1,2,0),(2,1,0)\right\}$ is not a basis of \mathbb{R}^3

Basis Properties

Theorem 1 (Uniqueness of Scalars) Let $\{x_1, x_2, ..., x_n\}$ be a basis for *X*. Then for each vector $x \in X$, there is a unique set of scalars $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ such that

 $x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$

Pf. Standard calculation.

Theorem 2 (Maximum Independent Set Size) Suppose that $B = \{x_1, x_2, ..., x_n\}$ is a basis of X with n finite and $Y = \{y_1, y_2, ..., y_m\}$ is a set of linearly independent vectors. Then $m \le n$.

Note: *n* is *finite* is necessary.

Proof of Theorem 2 - Outline

Proof Outline.

- 1. Assume m > n.
- 2. Write y_1 as a linear combination of the x_i . At least one coefficient can't be 0, say the coefficient of x_n (reindex x's if necessary).
- 3. Replace x_n in B with y_1 . Show B still is a basis for X.
- 4. Start over with y_2 and the "new" *B*. Replace x_{n-1} by y_2 .
- 5. Continue the process until y_n replaces x_1 .
- 6. *B* still a basis now is $\{y_1, y_2, ..., y_n\}$.
- 7. Thus y_{n+1} can be written as as linear combination from *B* contradicting the linear independence of *Y*. Hence $m \le n$.

Dimension

Theorem 3 If $B = \{x_1, x_2, ..., x_N\}$ is a basis of *X* for some $N < \infty$, then every basis of *X* contains exactly *N* vectors.

Pf. • Let B_1 be a basis with n vectors and B_2 be a basis with m vectors.

- Apply Theorem 2 with B_1 as the basis and B_2 as the linearly independent set. Therefore $m \le n$.
- Now apply Theorem 2 with B_2 as the basis and B_1 as the linearly independent set. Therefore $n \leq m$.
- Since $m \le n$ and $n \le m$, it follows that m = n.