Dimension of a Vector Space

Definition 1 (Dimension) If X has a finite basis of n vectors, then X is finite dimensional and has dimension $\operatorname{dim}(X)=n$. If X is not finite dimensional, then X has infinite dimension and $\operatorname{dim}(X)=\infty$.

Example 1 Several standard spaces:

- $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$
- $\operatorname{dim}\left(\mathbb{P}^{n}\right)=n+1$
- $\operatorname{dim}\left(\mathbb{R}^{\infty}\right)=\infty \quad$ The space of real sequences is large (but it's a "small ∞ ")
- $\operatorname{dim}(\mathbb{P})=\infty \quad$ (another "small ∞," isomorphic to \mathbb{R}^{∞})

Examples

Example 2 Infinite dimensional spaces

- $\operatorname{dim}(\mathcal{C}[0,1])=\infty$ The space of continuous functions on $[0,1]$ is very large (a "big ∞ ")
- $\operatorname{dim}(\mathcal{B}(\mathbb{R}))=\infty$ with $\mathcal{B}(\mathbb{R})=\{$ bounded real functions $\}$
- Is the following true:

Let Z be an arbitrary set and X an arbitrary vector space over F. The space of all functions from Z to X, written X^{Z}, is a vector space over F with dimension $\operatorname{dim}\left(X^{Z}\right)=\operatorname{dim}(X)^{|Z|}$

Basis \& Dimension Facts

Basis Facts

- Every vector space has a basis (requires the Axiom of Choice)
- Every linearly independent set can be extended to a basis
- A linearly independent set can be no larger than a basis
- A set containing more vectors than a basis must be linearly dependent
- Any two bases for a vector space contain the same number of vectors (finite dimensional case)
- If X has a set with n linearly independent vectors and every set of $n+1$ vectors is dependent, then $\operatorname{dim}(X)=n$
- If Y is a subspace of X, then $\operatorname{dim}(Y) \leq \operatorname{dim}(X)$.

"Two Out of Three Ain't Bad"

Theorem 1 Suppose X is a vector space with $\operatorname{dim}(X)=n$ and $Y \subseteq X$. If any two of the following hold, then the third also holds.

1. Y spans X
2. Y is linearly independent
3. Y contains exactly n vectors

Theorem 2 Suppose that $\operatorname{dim}(X)<\infty$ and that $X=Y \oplus Z$. Then $\operatorname{dim}(X)=\operatorname{dim}(Y)+\operatorname{dim}(Z)$.

Nota Bene: Recall that \oplus is the "interior analogue" of \times and that if $X=Y \times Z$, then $\operatorname{dim}(X)=\operatorname{dim}(Y) \times \operatorname{dim}(Z)$.

"Sum of Dimensions" Proof

Proof of Theorem 2 (3.3.43).

Since $\operatorname{dim}(X)<\infty$, so are $\operatorname{dim}(Y)$ and $\operatorname{dim}(Z)$. Therefore there are bases of Y and $Z: \mathcal{B}_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ and $\mathcal{B}_{Z}=\left\{z_{1}, \ldots, z_{m}\right\}$. Set $\mathcal{B}=\mathcal{B}_{Y} \cup \mathcal{B}_{Z}$. Let

$$
0=\sum_{i=1}^{n} \alpha_{i} y_{i}+\sum_{i=1}^{m} \beta_{i} z_{i}
$$

be a linear combination from \mathcal{B}. Since representation of vectors is unique in $X=Y \oplus Z$, we have that $0=\sum_{i=1}^{n} \alpha_{i} y_{i}$ and
$0=\sum_{i=1}^{m} \beta_{i} z_{i}$ Therefore $0=\alpha_{i}=\beta_{j}$ for all i and j as \mathcal{B}_{Y} and \mathcal{B}_{Z} are independent. I.e., \mathcal{B} is linearly independent. Since $X=Y \oplus Z$, it is clear that \mathcal{B} spans X. Hence, $|\mathcal{B}|=n+m=\operatorname{dim}(X)$.

