Dimension of a Vector Space

Definition 1 (Dimension) If X has a finite basis of n vectors, then X is finite dimensional and has dimension dim(X) = n. If X is not finite dimensional, then X has infinite dimension and $dim(X) = \infty$.

Example 1 Several standard spaces:

- \bullet $dim(\mathbb{R}^n) = n$
- $dim(\mathbb{R}^{\infty}) = \infty$ The space of real sequences is large (but it's a "small ∞ ")
- $dim(\mathbb{P}) = \infty$ (another "small ∞ ," isomorphic to \mathbb{R}^{∞})

Examples

Example 2 Infinite dimensional spaces

- $dim(\mathcal{C}[0,1]) = \infty$ The space of continuous functions on [0,1] is very large (a "big ∞ ")
- $dim(\mathcal{B}(\mathbb{R})) = \infty \text{ with } \mathcal{B}(\mathbb{R}) = \{\text{bounded real functions }\}$
- Is the following true: Let Z be an arbitrary set and X an arbitrary vector space over F. The space of all functions from Z to X, written X^Z , is a vector space over F with dimension $dim(X^Z) = dim(X)^{|Z|}$

Basis & Dimension Facts

Basis Facts

- Every vector space has a basis (requires the Axiom of Choice)
- Every linearly independent set can be extended to a basis
- A linearly independent set can be no larger than a basis
- A set containing more vectors than a basis must be linearly dependent
- Any two bases for a vector space contain the same number of vectors (finite dimensional case)
- If X has a set with n linearly independent vectors and every set of n+1 vectors is dependent, then dim(X)=n
- If Y is a subspace of X, then $dim(Y) \leq dim(X)$.

"Two Out of Three Ain't Bad"

Theorem 1 Suppose X is a vector space with dim(X) = n and $Y \subseteq X$. If any two of the following hold, then the third also holds.

- 1. Y spans X
- 2. *Y* is linearly independent
- 3. Y contains exactly n vectors

Theorem 2 Suppose that $dim(X) < \infty$ and that $X = Y \oplus Z$. Then dim(X) = dim(Y) + dim(Z).

Nota Bene: Recall that \oplus is the "interior analogue" of \times and that if $X = Y \times Z$, then $dim(X) = dim(Y) \times dim(Z)$.

"Sum of Dimensions" Proof

Proof of Theorem 2 (3.3.43).

Since $dim(X) < \infty$, so are dim(Y) and dim(Z). Therefore there are bases of Y and Z: $\mathcal{B}_Y = \{y_1, \dots, y_n\}$ and $\mathcal{B}_Z = \{z_1, \dots, z_m\}$. Set $\mathcal{B} = \mathcal{B}_Y \cup \mathcal{B}_Z$. Let

$$0 = \sum_{i=1}^{n} \alpha_i y_i + \sum_{i=1}^{m} \beta_i z_i$$

be a linear combination from \mathcal{B} . Since representation of vectors is unique in $X=Y\oplus Z$, we have that $0=\sum_{i=1}^n\alpha_iy_i$ and $0=\sum_{i=1}^m\beta_iz_i$ Therefore $0=\alpha_i=\beta_j$ for all i and j as \mathcal{B}_Y and \mathcal{B}_Z are independent. I.e., \mathcal{B} is linearly independent. Since $X=Y\oplus Z$, it is clear that \mathcal{B} spans X. Hence, $|\mathcal{B}|=n+m=dim(X)$.