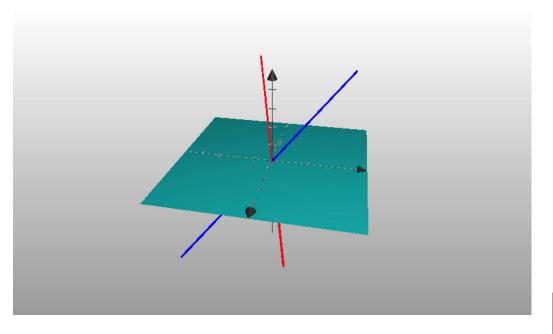
Subspaces and Direct Sums

The theorem *Every linearly independent set can be extended to a basis* has:

Corollary 1 Suppose *X* is an *n*-dimensional vector space with an *m*-dimensional subspace *Y*. Then there exists a subspace *Z* of dimension (n - m) such that X = Y + Z.

Pf. (Sketch) Take bases \mathcal{B}_X for X and \mathcal{B}_Y for Y. Eliminate the portion of \mathcal{B}_X dependent on \mathcal{B}_Y . The remaining vectors form a basis for Z.

Note: Z need not be unique. (Z = red or blue)



Linear Transformations

Definition 1 (Linear Transformation) A mapping *T* from a vector space *X* into a vector space *Y*, both spaces over the field *F*, is a linear transformation, written as $T \in L(X, Y)$, if and only if for all $x \in X$, $y \in Y$, and $\alpha \in F$, we have

1.
$$T(x+y) = T(x) + T(y)$$

2.
$$T(\alpha x) = \alpha T(x)$$

A nonlinear transformation is a mapping that is not linear.

Theorem 2 (Superposition Principle) $T \in L(X, Y)$ *if and only if*

$$T\left(\sum_{i=1}^{m} \alpha_i x_i\right) = \sum_{i=1}^{m} \alpha_i T\left(x_i\right)$$

Examples of Linear Transformations

Example 1

•
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T([x, y]) = [2x + 3y, x - y]$

• $T: \mathbb{R}^2 \to \mathbb{R}^1$ by T([x, y]) = [x]

•
$$D: \mathbb{P}^n \to \mathbb{P}^{n-1}$$
 by $D(p) = \frac{d}{dx} p(x)$

•
$$I: C[0,1] \to \mathbb{R} \ by I(f) = \int_0^1 f(t) \, dt$$

• Let $k \in C[a, b] \times C[a, b]$ such that for any $x \in C[a, b]$,

$$\widehat{x}(s) = \int_{a}^{b} x(t)k(s,t) \, dt \in \mathcal{C}[a,b]$$

Then $\widehat{\cdot} : \mathcal{C}[a, b] \to \mathcal{C}[a, b]$ is a linear transformation.^{*a*}

^aFredholm Integral Equation of the First Type or a kernel transform