Subspaces and Direct Sums

The theorem Every linearly independent set can be extended to a basis has:
Corollary 1 Suppose X is an n-dimensional vector space with an m-dimensional subspace Y. Then there exists a subspace Z of dimension $(n-m)$ such that $X=Y+Z$.

Pf. (Sketch) Take bases \mathcal{B}_{X} for X and \mathcal{B}_{Y} for Y. Eliminate the portion of \mathcal{B}_{X} dependent on \mathcal{B}_{Y}. The remaining vectors form a basis for Z.

Note: Z need not be unique. ($Z=$ red or blue)

Linear Transformations

Definition 1 (Linear Transformation) A mapping T from a vector space X into a vector space Y, both spaces over the field F, is a linear transformation, written as $T \in L(X, Y)$, if and only if for all $x \in X, y \in Y$, and $\alpha \in F$, we have

$$
\begin{aligned}
& \text { 1. } T(x+y)=T(x)+T(y) \\
& \text { 2. } T(\alpha x)=\alpha T(x)
\end{aligned}
$$

A nonlinear transformation is a mapping that is not linear.
Theorem 2 (Superposition Principle) $T \in L(X, Y)$ if and only if

$$
T\left(\sum_{i=1}^{m} \alpha_{i} x_{i}\right)=\sum_{i=1}^{m} \alpha_{i} T\left(x_{i}\right)
$$

Examples of Linear Transformations

Example 1

- $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T([x, y])=[2 x+3 y, x-y]$
- $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ by $T([x, y])=[x]$
- $D: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1}$ by $D(p)=\frac{d}{d x} p(x)$
- $I: \mathcal{C}[0,1] \rightarrow \mathbb{R}$ by $I(f)=\int_{0}^{1} f(t) d t$
- Let $k \in \mathcal{C}[a, b] \times \mathcal{C}[a, b]$ such that for any $x \in \mathcal{C}[a, b]$,

$$
\widehat{x}(s)=\int_{a}^{b} x(t) k(s, t) d t \in \mathcal{C}[a, b]
$$

Then $\uparrow: \mathcal{C}[a, b] \rightarrow \mathcal{C}[a, b]$ is a linear transformation. ${ }^{a}$
${ }^{a}$ Fredholm Integral Equation of the First Type or a kernel transform

