Examples of Linear Transformations

Example 1

- Let $\mathcal{L}_{1}^{c}=\left\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f \in \mathcal{C}(\mathbb{R})\right.$ and $\left.\int_{\mathbb{R}}|f|<\infty\right\}$. Now define the Fourier transform $\mathcal{F}(f) \in \mathcal{L}_{1}^{c}$ by

$$
\mathcal{F}(f)(s)=\int_{\mathbb{R}} f(t) e^{-i s t} d t
$$

Then $\mathcal{F}: \mathcal{L}_{1}^{c} \rightarrow \mathcal{L}_{1}^{c}$ is a linear transformation.

- Let $z \in \mathbb{C}$. Then $\bar{z}=($ the complex conjugate of z) is a nonlinear transformation.
- Let $|\cdot|$ be the absolute value function on \mathbb{R}. Is $|\cdot| a$ linear transformation from \mathbb{R} to \mathbb{R} ?

Null Space and Range Space

Definition 1 Let $T \in L(X, Y)$. Then the

1. null space $\mathcal{N}(T)$ (or kernel $\operatorname{ker}(T)$) is the set

$$
\mathcal{N}(T)=\{x \in X \mid T(x)=0\}
$$

2. range space $\mathcal{R}(T)$ (or image space) is the set

$$
\mathcal{R}(T)=\{y \in Y \mid y=T(x) \text { for some } x \in X\}=T(X) .
$$

Theorem 1 Let $T \in L(X, Y)$. Then

1. $\mathcal{N}(T)$ is a subspace of X,
2. $\mathcal{R}(T)$ is a subspace of Y.

Pf. Exercise (3.4.20)

Range \& Dimension

Theorem 2 If $T \in L(X, Y)$, then $\operatorname{dim}(\mathcal{R}(T)) \leq \operatorname{dim}(X)$.
Pf. Assume $X \neq\{0\} \neq \mathcal{R}(T)$, otherwise the result is trivial.
Set $n=\operatorname{dim}(X)>0$. Choose $\left\{y_{1}, \ldots, y_{n+1}\right\} \subseteq \operatorname{dim}(\mathcal{R}(T))$.
For each i, find x_{i} such that $T\left(x_{i}\right)=y_{i}$. Since $\operatorname{dim}(X)=n$, we know that there are scalars α_{i} so that

$$
\alpha_{1} x_{1}+\cdots+\alpha_{n+1} x_{n+1}=0
$$

Applying T to this linear combination yields

$$
\alpha_{1} y_{1}+\cdots+\alpha_{n+1} y_{n+1}=0
$$

Since the y_{i} were arbitrary, every subset of $\operatorname{dim}(\mathcal{R}(T))$ with $n+1$ vectors is lin. dep. Thence $\operatorname{dim}(\mathcal{R}(T)) \leq n$.

