The Dimension Theorem

Theorem 1 The inverse image of a basis under a linear transformation is linearly independent. I.e., Let $T \in L(X, Y)$ and let $\mathcal{B}_{Y}=\left\{y_{i}\right\}$. For each i, choose an x_{i} such that $T\left(x_{i}\right)=y_{i}$. Then the set $\left\{x_{i}\right\}$ is linearly independent.

Pf. Exercise (3.4.24)
Theorem 2 (The Dimension Theorem) Let $T \in L(X, Y)$ with $\operatorname{dim}(X)<\infty$. Then

$$
\operatorname{dim}(\mathcal{R}(T))+\operatorname{dim}(\mathcal{N}(T))=\operatorname{dim}(X) .
$$

Pf. Set $\operatorname{dim}(X)=n$ and $\operatorname{dim}(\mathcal{N}(T))=s$ and set $r=n-s$. (Need to show: $\operatorname{dim}(\mathcal{R}(T))=r=n-s$.)

The Dimension Theorem Proof

Pf. Find a basis for $\mathcal{N}(T)$ labeling the vectors $\left\{e_{1}, \ldots, e_{s}\right\}$. Extend this set to a basis for X by adding r vectors to have $\mathcal{B}=\left\{x_{1}, \ldots, x_{r}, e_{1} \ldots, e_{s}\right\}$. Since \mathcal{B} is a basis, then $T(\mathcal{B})$ spans $\mathcal{R}(T)$. Since $T\left(e_{i}\right)=0$, then $T\left(\left\{x_{1}, \ldots, x_{r}\right\}\right)$ spans $\mathcal{R}(T)$. Set $y_{i}=T\left(x_{i}\right)$; so $\left\{y_{1}, \ldots, y_{r}\right\}$ spans $\mathcal{R}(T)$. Suppose a linear combination $\alpha_{1} y_{1}+\cdots+\alpha_{r} y_{r}=0$. Then because $\sum_{r} \alpha_{i} T\left(x_{i}\right)=T\left(\sum_{r} \alpha_{i} x_{i}\right)$, we have that $\sum_{r} \alpha_{i} x_{i} \in \mathcal{N}(T)$, thus $\sum_{r} \alpha_{i} x_{i}=\sum_{s} \gamma_{i} e_{i}$ which can be written as

$$
\alpha_{1} x_{1}+\cdots+\alpha_{r} x_{r}-\gamma_{1} e_{1}-\cdots-\gamma_{s} e_{s}=0
$$

which implies each $\alpha_{i}=0$. Hence $\operatorname{dim}(\mathcal{R}(T))=r$.

- What about the cases $s=0$ and n ?
(Group-Project time!)

