Project Solution

The Group-Project solution is much easier when looking at the spaces from a different "dimension."

The Setup. Define $\mathcal{D}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by

$$
\mathcal{D}\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)=\left[x_{2}, 2 x_{3}, 3 x_{4}, 0\right]
$$

A Solution. Consider $\mathcal{T}: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$ with $\mathcal{T}(p)=p^{\prime} .\left(\mathbb{P}^{3} \cong \mathbb{R}^{4}\right)$

- $\mathfrak{R}(T)=\{$ polynomials of degree 2$\} \cong \mathbb{R}^{3}$
- $\mathfrak{N}(T)=\{$ constant polynomials $\} \cong \mathbb{R}^{1}$
- $4=3+1 \Rightarrow \mathbb{R}^{4} \cong \mathbb{P}^{3}=\left\{p \in \mathbb{P}^{3} \mid p(0)=0\right\} \oplus \mathfrak{N}(T)$

