Rank & Nullity

Definition 1 (Rank and Nullity of a Linear Transformation) Let $T \in L(X, Y)$.

- The rank ρ of T is the dimension of the range space; $\rho(T) = \dim(\Re(T))$
- The nullity ν of T is the dimension of the nullspace; $\nu(T) = \dim(\mathfrak{N}(T))$

Corollary 1 (Fundamental Theorem of Linear Algebra) Let $T \in L(X, Y)$ where dim(X) = n. Then

 $\rho(T) + \nu(T) = n$

Pf. √

"Affine Nullspace"

Corollary 2 Let $T \in (X, Y)$ where $\dim(X) < \infty$, and let $\mathcal{B} = \{x_1, \ldots, x_s\}$ be a basis for $\mathfrak{N}(T)$ so that $\dim(\mathfrak{N}(T) = s$. Then

- 1. a vector $x \in X$ satisfies T(x) = 0 iff there is a unique set of scalars α_i s.t. $x = \sum_{i=1}^{s} \alpha_i x_i$,
- 2. a vector $y_0 \in Y$ is in $\Re(T)$ iff there is at least one vector $x \in X$ s.t. $y_0 = T(x)$,
- 3. if vectors $x_0 \in X$ and $y_0 \in Y$ are s.t. $T(x_0) = y_0$, then $x \in X$ satisfies $T(x) = y_0$ iff there is a unique set of scalars β_i s.t. $x = x_0 + \sum_{i=1}^s \beta_i x_i$.

Pf. √

Inverses

Theorem 3 Let $T \in L(X, Y)$.

1. T^{-1} exists iff T(x) = 0 implies x = 0; i.e., $\mathfrak{N}(T) = \{0\}$.

2. If T^{-1} exists, then $T^{-1} \in L(\mathfrak{R}(T), X)$.

Pf. 1. (\Leftarrow) Assume $\mathfrak{N}(T) = \{0\}$. Then $T(x_1) = T(x_2) \Leftrightarrow T(x_1) - T(x_2) = 0 \Leftrightarrow T(x_1 - x_2) = 0 \Leftrightarrow x_1 - x_2 \in \mathfrak{N}(T) \Leftrightarrow x_1 = x_2$. (\Rightarrow) Now assume that T^{-1} exists and that T(x) = 0. Since T(0) = 0, then T(x) = T(0). Whence x = 0.

2. Assume that *T* is nonsingular and that $T(x_1) = y_1$, $T(x_2) = y_2$. Then $T^{-1}(y_1 + y_2) = T^{-1}(T(x_1) + T(x_2)) =$ $T^{-1}(T(x_1 + x_2)) = x_1 + x_2 = T^{-1}(y_1) + T^{-1}(y_2)$. For $\alpha \in F$, $T^{-1}(\alpha y_1) = T^{-1}(\alpha T(x_1)) = T^{-1}(T(\alpha x_1) = \alpha x_1 = \alpha T^{-1}(y_1)$.

Examples

Example Set 1

• Let
$$T([a, b]) = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} [a, b]$$
. Show T is nonsingular.
• Let $S([a, b]) = \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix} [a, b]$. Show T is singular.

•
$$\mathcal{D}: \mathbb{P} \to \mathbb{P}$$
 defined by $\mathcal{D}(p) = \frac{dp}{dx}$ is singular.

• Is $\mathcal{I}: \mathbb{P} \to \mathbb{P}$ defined by $\mathcal{I}(p) = \int p \, dx$ nonsingular?

■ Is T([a,b]) = [a+b,0,a-b,0,0] invertible?