Rank \& Nullity

Definition 1 (Rank and Nullity of a Linear Transformation)

 Let $T \in L(X, Y)$.- The rank ρ of T is the dimension of the range space; $\rho(T)=\operatorname{dim}(\mathfrak{R}(T))$
- The nullity ν of T is the dimension of the nullspace; $\nu(T)=\operatorname{dim}(\mathfrak{N}(T))$

Corollary 1 (Fundamental Theorem of Linear Algebra) Let $T \in L(X, Y)$ where $\operatorname{dim}(X)=n$. Then

$$
\rho(T)+\nu(T)=n
$$

Pf. $\quad \checkmark$

"Affine Nullspace"

Corollary 2 Let $T \in(X, Y)$ where $\operatorname{dim}(X)<\infty$, and let $\mathcal{B}=\left\{x_{1}, \ldots, x_{s}\right\}$ be a basis for $\mathfrak{N}(T)$ so that $\operatorname{dim}(\mathfrak{N}(T)=s$. Then

1. a vector $x \in X$ satisfies $T(x)=0$ iff there is a unique set of scalars α_{i} s.t. $x=\sum_{i=1}^{s} \alpha_{i} x_{i}$,
2. a vector $y_{0} \in Y$ is in $\mathfrak{R}(T)$ iff there is at least one vector $x \in X$ s.t. $y_{0}=T(x)$,
3. if vectors $x_{0} \in X$ and $y_{0} \in Y$ are s.t. $T\left(x_{0}\right)=y_{0}$, then $x \in X$ satisfies $T(x)=y_{0}$ iff there is a unique set of scalars β_{i} s.t. $x=x_{0}+\sum_{i=1}^{s} \beta_{i} x_{i}$.

Pf. $\quad \checkmark$

Inverses

Theorem 3 Let $T \in L(X, Y)$.

1. T^{-1} exists iff $T(x)=0$ implies $x=0$; i.e., $\mathfrak{N}(T)=\{0\}$.
2. If T^{-1} exists, then $T^{-1} \in L(\mathfrak{R}(T), X)$.

Pf. 1. (\Leftarrow) Assume $\mathfrak{N}(T)=\{0\}$. Then $T\left(x_{1}\right)=T\left(x_{2}\right) \Leftrightarrow$ $T\left(x_{1}\right)-T\left(x_{2}\right)=0 \Leftrightarrow T\left(x_{1}-x_{2}\right)=0 \Leftrightarrow x_{1}-x_{2} \in \mathfrak{N}(T) \Leftrightarrow$ $x_{1}=x_{2}$.
(\Rightarrow) Now assume that T^{-1} exists and that $T(x)=0$. Since $T(0)=0$, then $T(x)=T(0)$. Whence $x=0$.
2. Assume that T is nonsingular and that $T\left(x_{1}\right)=y_{1}$, $T\left(x_{2}\right)=y_{2}$. Then $T^{-1}\left(y_{1}+y_{2}\right)=T^{-1}\left(T\left(x_{1}\right)+T\left(x_{2}\right)\right)=$ $T^{-1}\left(T\left(x_{1}+x_{2}\right)\right)=x_{1}+x_{2}=T^{-1}\left(y_{1}\right)+T^{-1}\left(y_{2}\right)$. For $\alpha \in F$, $T^{-1}\left(\alpha y_{1}\right)=T^{-1}\left(\alpha T\left(x_{1}\right)\right)=T^{-1}\left(T\left(\alpha x_{1}\right)=\alpha x_{1}=\alpha T^{-1}\left(y_{1}\right)\right.$.

Examples

Example Set 1

- Let $T([a, b])=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right][a, b]$. Show T is nonsingular.
- Let $S([a, b])=\left[\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right][a, b]$. Show T is singular.
- $\mathcal{D}: \mathbb{P} \rightarrow \mathbb{P}$ defined by $\mathcal{D}(p)=\frac{d p}{d x}$ is singular.
- Is $\mathcal{I}: \mathbb{P} \rightarrow \mathbb{P}$ defined by $\mathcal{I}(p)=\int p d x$ nonsingular?
- Is $T([a, b])=[a+b, 0, a-b, 0,0]$ invertible?

