Singular and Nonsingular Examples

Example Set 1

- Let $T([a, b])=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right][a, b]$. Show T is nonsingular.
- Let $S([a, b])=\left[\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right][a, b]$. Show T is singular.
- $\mathcal{D}: \mathbb{P} \rightarrow \mathbb{P}$ defined by $\mathcal{D}(p)=\frac{d p}{d x}$ is singular.
- Is $\mathcal{I}: \mathbb{P} \rightarrow \mathbb{P}$ defined by $\mathcal{I}(p)=\int p d x$ nonsingular?
- Is $T([a, b])=[a+b, 0, a-b, 0,0]$ invertible?

"Inverse Results"

Theorem 1 Let $T \in L(X, Y)$ with $\operatorname{dim}(X)<\infty$. Then T is invertible if and only if $\rho(T)=\operatorname{dim}(X)$. T is said to have "full rank."
Pf. \checkmark
Theorem 2 Let $T \in L(X, Y)$ with $\operatorname{dim}(X)=\operatorname{dim}(Y)=n$ where $n<\infty$. Then T is invertible if and only if $\mathfrak{R}(T)=Y$.
Pf. $(\Rightarrow) T$ invertible implies that $\operatorname{dim}(\mathfrak{R}(T))=n=\operatorname{dim}(Y)$. Since $\mathfrak{R}(T)$ is a subspace of Y, then $\mathfrak{R}(T)=Y$.
(\Leftarrow) Choose a basis $\mathcal{B}=\left\{y_{1}, \ldots, y_{n}\right\}$ for $\mathfrak{R}(T)=Y$. Then, since $T^{-1}(\mathcal{B})$ is an independent set of size n, it forms a basis for X. Hence the only set of scalars for which $\sum_{i} \alpha_{i} x_{i}=0$ is $\alpha_{i}=0$. Whence $\mathfrak{N}(T)=\{0\}$, so T is invertible.

Collected Results, I

Theorem 3 (Invertible Linear Transformations) Let X and Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

1. T is invertible or nonsingular
2. T is injective or $1-1$
3. $T(x)=0$ implies $x=0$; i.e., $\mathfrak{N}(T)=\{0\}$
4. For each $y \in Y, \exists$ a unique $x \in X$ such that $T(x)=y$
5. If $T\left(x_{1}\right)=T\left(x_{2}\right)$, then $x_{1}=x_{2}$
6. If $x_{1} \neq x_{2}$, then $T\left(x_{1}\right) \neq T\left(x_{2}\right)$,

If X is finite dimensional, then TFAE:
7. T is injective
8. $\rho(T)=\operatorname{dim}(X)$

Collected Results, II

Theorem 4 (Surjective Linear Transformations) Let X and Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

1. T is surjective or onto
2. For $y \in Y$, there is at least one $x \in X$ such that

$$
T(x)=y
$$

If X and Y are finite dimensional, then TFAE:
3. T is surjective
4. $\rho(T)=\operatorname{dim}(Y)$

Pf. \checkmark

Collected Results, III

Theorem 5 (Bijective Linear Transformations) Let X and Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

1. T is bijective or onto
2. For $y \in Y$, there is a unique $x \in X$ such that $T(x)=y$ If X and Y are finite dimensional, then TFAE:
3. T is surjective
4. $\rho(T)=\operatorname{dim}(X)=\operatorname{dim}(Y)$

Theorem 6 (Common Finite Dimension) Let X and Y be vector spaces over F with finite dimension n and $T \in L(X, Y)$. Then
T : injective $\Leftrightarrow T$: surjective $\Leftrightarrow T$: bijective $\Leftrightarrow T$: invertible

Transformation Spaces

Definition 1 For S and T in $L(X, Y)$ and α in F, define 1. $S+T$ by $(S+T)(x) \triangleq S(x)+T(x)$
2. αS by $(\alpha S)(x) \triangleq \alpha S(x)$
3. $S \circ T$ by $(S \circ T)(x) \triangleq S(T(x))$

Theorem $7 L(X, Y)$ is a vector space over F (using 1 \& 2)

Theorem $8 L(X, X)$ is an associative algebra with identity over F (using 1, 2, \& 3, and identity $I(x)=x$)

