Singular and Nonsingular Examples

Example Set 1

• Let
$$T([a, b]) = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} [a, b]$$
. Show T is nonsingular.
• Let $S([a, b]) = \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix} [a, b]$. Show T is singular.

•
$$\mathcal{D}: \mathbb{P} \to \mathbb{P}$$
 defined by $\mathcal{D}(p) = \frac{dp}{dx}$ is singular.

• Is $\mathcal{I}: \mathbb{P} \to \mathbb{P}$ defined by $\mathcal{I}(p) = \int p \, dx$ nonsingular?

■ Is T([a,b]) = [a+b,0,a-b,0,0] invertible?

"Inverse Results"

Theorem 1 Let $T \in L(X, Y)$ with $dim(X) < \infty$. Then T is invertible if and only if $\rho(T) = dim(X)$. T is said to have "full rank."

Pf. √

Theorem 2 Let $T \in L(X, Y)$ with $\dim(X) = \dim(Y) = n$ where $n < \infty$. Then T is invertible if and only if $\Re(T) = Y$.

Pf. (\Rightarrow) *T* invertible implies that $\dim(\mathfrak{R}(T)) = n = \dim(Y)$. Since $\mathfrak{R}(T)$ is a subspace of *Y*, then $\mathfrak{R}(T) = Y$.

(\Leftarrow) Choose a basis $\mathcal{B} = \{y_1, \dots, y_n\}$ for $\mathfrak{R}(T) = Y$. Then, since $T^{-1}(\mathcal{B})$ is an independent set of size n, it forms a basis for X. Hence the only set of scalars for which $\sum_i \alpha_i x_i = 0$ is $\alpha_i = 0$. Whence $\mathfrak{N}(T) = \{0\}$, so T is invertible.

Collected Results, I

Theorem 3 (Invertible Linear Transformations) Let X and Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

- 1. T is invertible or nonsingular
- **2.** T is injective or 1-1

3.
$$T(x) = 0$$
 implies $x = 0$; i.e., $\Re(T) = \{0\}$

4. For each $y \in Y$, \exists a unique $x \in X$ such that T(x) = y

5. If
$$T(x_1) = T(x_2)$$
, then $x_1 = x_2$

6. If $x_1 \neq x_2$, then $T(x_1) \neq T(x_2)$,

If X is finite dimensional, then TFAE:

7. T is injective

8.
$$\rho(T) = \dim(X)$$

Collected Results, II

Theorem 4 (Surjective Linear Transformations) Let Xand Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

- 1. T is surjective or onto
- 2. For $y \in Y$, there is at least one $x \in X$ such that T(x) = y

If X and *Y* are finite dimensional, then TFAE:

- 3. T is surjective
- **4.** $\rho(T) = \dim(Y)$

Pf. √

Collected Results, III

Theorem 5 (Bijective Linear Transformations) Let X and Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

- 1. *T* is bijective or onto
- 2. For $y \in Y$, there is a unique $x \in X$ such that T(x) = y
- *If X* and *Y* are finite dimensional, then TFAE:
 - 3. T is surjective
 - **4.** $\rho(T) = \dim(X) = \dim(Y)$

Theorem 6 (Common Finite Dimension) Let X and Y be vector spaces over F with finite dimension n and $T \in L(X, Y)$. Then

 $T: injective \Leftrightarrow T: surjective \Leftrightarrow T: bijective \Leftrightarrow T: invertible$

Transformation Spaces

Definition 1 For *S* and *T* in L(X, Y) and α in *F*, define

- 1. S + T by $(S + T)(x) \stackrel{\Delta}{=} S(x) + T(x)$
- **2.** $\alpha S \ \mathbf{by} \ (\alpha S)(x) \stackrel{\Delta}{=} \alpha S(x)$

3.
$$S \circ T$$
 by $(S \circ T)(x) \stackrel{\Delta}{=} S(T(x))$

Theorem 7 L(X, Y) is a vector space over F (using 1 & 2)

Theorem 8 L(X, X) is an associative algebra with identity over *F* (using 1, 2, & 3, and identity I(x) = x)

(Go Back)

(View LATEX source)

Intro to Linear Algebra MAT 5230, §101 – p. 6/