Transformation Spaces

Definition 1 For *S* and *T* in L(X, Y) and α in *F*, define

- 1. S + T by $(S + T)(x) \stackrel{\Delta}{=} S(x) + T(x)$
- **2.** $\alpha S \ \mathbf{by} \ (\alpha S)(x) \stackrel{\Delta}{=} \alpha S(x)$
- **3.** ST by $(ST)(x) \stackrel{\Delta}{=} S(T(x))$ when range $(T) \subseteq \operatorname{dom}(S)$

Theorem 1 Let $S, T, U \in L(X, X)$. Then

- 1. If ST = US = I, then S is bijective and $S^{-1} = T = U$.
- **2.** If *S* is bijective, then $(S^{-1})^{-1} = S$.
- **3.** If *S* and *T* are bijective, then $(ST)^{-1} = T^{-1}S^{-1}$.
- 4. If S is bijective and $\alpha \neq 0$, then $(\alpha S)^{-1} = (1/\alpha) \cdot S^{-1}$.

Polynomials of Transforms

Theorem 2 L(X, X) is an associative algebra^{*a*} with identity over *F* (using 1, 2, & 3, and identity I(x) = x). L(X, X) is usually noncommutative.

Definition 2 (Powers of Transforms) Let $T \in L(X, X)$. Then set $T^0 = I$ and, for n > 0, define $T^{(n)} \triangleq T \cdot T^{(n-1)}$ and $T^{(-n)} \triangleq (T^{-1})^n$.

Definition 3 Let $p \in \mathbb{P}^n$, so that $p(\lambda) = a_0 + a_1\lambda + \cdots + a_n\lambda^n$. For $T \in L(X, X)$, define

$$p(T) = a_0 I + a_1 T + \dots + a_n T^n = \sum_{i=0}^n \alpha_i T^i.$$

^{*a*} "Vector space plus multiplication." See pg. 56 and 104 of the text.

Finite Dimension Structure Theorem

Definition 4 X is isomorphic to Y, written $X \cong Y$, if and only if there is a bijection $T \in L(X, Y)$.

Theorem 3 (Structure Theorem) Every n-dimensional vector space X over the field F is isomorphic to F^n .

Pf. Choose a basis $\mathcal{B} = \{e_1, \ldots, e_n\}$ for *X*. Then define $T \in L(X, F^n)$ by

$$T\left(\sum_{i=1}^{n} \alpha_i e_i\right) = [\alpha_1, \alpha_2, \dots, \alpha_n]$$

Corollary 4 Let F be a field and n be a positive integer. There is exactly one vector space of dimension n over F.

(Go Back)

(View LATEX source)

Intro to Linear Algebra MAT 5230, §101 – p. 3/