## Transformation Spaces

Definition 1 For $S$ and $T$ in $L(X, Y)$ and $\alpha$ in $F$, define

1. $S+T$ by $(S+T)(x) \triangleq S(x)+T(x)$
2. $\alpha S$ by $(\alpha S)(x) \triangleq \alpha S(x)$
3. $S T$ by $(S T)(x) \triangleq S(T(x))$ when $\operatorname{range}(T) \subseteq \operatorname{dom}(S)$

Theorem 1 Let $S, T, U \in L(X, X)$. Then

1. If $S T=U S=I$, then $S$ is bijective and $S^{-1}=T=U$.
2. If $S$ is bijective, then $\left(S^{-1}\right)^{-1}=S$.
3. If $S$ and $T$ are bijective, then $(S T)^{-1}=T^{-1} S^{-1}$.
4. If $S$ is bijective and $\alpha \neq 0$, then $(\alpha S)^{-1}=(1 / \alpha) \cdot S^{-1}$.

## Polynomials of Transforms

Theorem $2 L(X, X)$ is an associative algebra ${ }^{a}$ with identity over $F$ (using 1, 2, \& 3, and identity $I(x)=x$ ). $L(X, X)$ is usually noncommutative.

## Definition 2 (Powers of Transforms) Let $T \in L(X, X)$.

Then set $T^{0}=I$ and, for $n>0$, define $T^{(n)} \triangleq T \cdot T^{(n-1)}$ and $T^{(-n)} \triangleq\left(T^{-1}\right)^{n}$.
Definition 3 Let $p \in \mathbb{P}^{n}$, so that $p(\lambda)=a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n}$. For $T \in L(X, X)$, define

$$
p(T)=a_{0} I+a_{1} T+\cdots+a_{n} T^{n}=\sum_{i=0}^{n} \alpha_{i} T^{i} .
$$

${ }^{a}$ "Vector space plus multiplication." See pg. 56 and 104 of the text.

## Finite Dimension Structure Theorem

Definition $4 X$ is isomorphic to $Y$, written $X \cong Y$, if and only if there is a bijection $T \in L(X, Y)$.

Theorem 3 (Structure Theorem) Every n-dimensional vector space $X$ over the field $F$ is isomorphic to $F^{n}$.
Pf. Choose a basis $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ for $X$. Then define $T \in L\left(X, F^{n}\right)$ by

$$
T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]
$$

Corollary 4 Let $F$ be a field and $n$ be a positive integer. There is exactly one vector space of dimension $n$ over $F$.

