Linear Functionals

Definition 1 Let X be a vector space over F. Then $f \in L(X, F)$ is called a linear functional.

Example Set 1

- Let $f \in C[a,b]$. Then $F(f) = \int_a^b f(t) dt$ is a linear functional.
- Let $f \in C[a,b]$ and choose $k \in C[a,b]$. Then $F_k(f) = \int_a^b f(t)k(t) dt$ is a linear functional.
- Let $f \in C[a,b]$ and $x_0 \in [a,b]$. Is $\frac{df}{dt}(x_0)$ a linear functional?
- Let F be a field. The mappings $\operatorname{proj}_i: F^n \to F$ for i=1..n given by $\operatorname{proj}_i\left([\alpha_1,\alpha_2,\ldots,\alpha_n]\right)=\alpha_i$ are linear functionals. $\phi=\sum \alpha_i\operatorname{proj}_i$ is also a linear functional.

Vector Space of Linear Functionals

Definition 2 Let X be a vector space over F. Define $X^f = L(X, F)$. When $f \in X^f$ is evaluated at the vector $x \in X$, we use the notation $f(x) \stackrel{\Delta}{=} \langle x, f \rangle$. Using x' in place of $f \in X^f$, we see

$$(f_1 + f_2)(x) = \langle x, x_1' + x_2' \rangle \stackrel{\Delta}{=} \langle x, x_1' \rangle + \langle x, x_2' \rangle$$
$$= f_1(x) + f_2(x)$$

and

$$(\alpha f)(x) = \langle x, \alpha x' \rangle \stackrel{\Delta}{=} \alpha \langle x, x' \rangle$$

= $\alpha f(x)$

Theorem 1 $X^f = L(X, F)$ is a vector space over F called the algebraic conjugate of X.

Algebraic Conjugate Basis

Theorem 2 Let X be a vector space with basis $\mathcal{B} = \{e_1, \ldots, e_n\}$ and let $\{\alpha_1, \ldots, \alpha_n\}$ be a set of arbitrarily chosen scalars. Then there is a unique linear functional $x' \in X^f$ such that $\langle e_i, x' \rangle = \alpha_i$ for i = 1..n.

- **Pf.** (\exists) For every $x \in X$, we have unique scalars ξ_i such that $x = \sum_n \xi_i e_i$. Define $x' \in X^f$ by $\langle x, x' \rangle = \sum_n \alpha_i \xi_i$. If $x = e_i$ for some i, then $\xi_i = 1$ and $\xi_j = 0$ for every $j \neq i$. Hence $\langle x, x' \rangle = \alpha_i$; i.e., $\langle e_i, x' \rangle = \alpha_i$.
- (!) Suppose $\langle e_i, x_1' \rangle = \alpha_i$ and $\langle e_i, x_2' \rangle = \alpha_i$ for i = 1..n. Then $\langle e_i, x_1' \rangle \langle e_i, x_2' \rangle = 0$ for i = 1..n, and so $\langle e_i, x_1' x_2' \rangle = 0$ for i = 1..n. This implies that $x_1' = x_2'$.

Definition 3 (Kronecker Delta) Set
$$\delta_{ij} = \begin{cases} 1 & \textit{if } i = j \\ 0 & \textit{if } i \neq j \end{cases}$$
.

(Go Back)