Linear Functionals

Definition 1 Let X be a vector space over F. Then $f \in L(X, F)$ is called a linear functional.

Example Set 1

- Let $f \in \mathcal{C}[a, b]$. Then $F(f)=\int_{a}^{b} f(t) d t$ is a linear functional.
- Let $f \in \mathcal{C}[a, b]$ and choose $k \in \mathcal{C}[a, b]$. Then $F_{k}(f)=\int_{a}^{b} f(t) k(t) d t$ is a linear functional.
- Let $f \in \mathcal{C}[a, b]$ and $x_{0} \in[a, b]$. Is $\frac{d f}{d t}\left(x_{0}\right)$ a linear functional?
- Let F be a field. The mappings $\operatorname{proj}_{i}: F^{n} \rightarrow F$ for $i=1 . . n$ given by $\operatorname{proj}_{i}\left(\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]\right)=\alpha_{i}$ are linear functionals. $\phi=\sum \alpha_{i} \operatorname{proj}_{i}$ is also a linear functional.

Vector Space of Linear Functionals

Definition 2 Let X be a vector space over F. Define $X^{f}=L(X, F)$. When $f \in X^{f}$ is evaluated at the vector $x \in X$, we use the notation $f(x) \triangleq\langle x, f\rangle$. Using x^{\prime} in place of $f \in X^{f}$, we see

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =\left\langle x, x_{1}^{\prime}+x_{2}^{\prime}\right\rangle \triangleq\left\langle x, x_{1}^{\prime}\right\rangle+\left\langle x, x_{2}^{\prime}\right\rangle \\
& =f_{1}(x)+f_{2}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
(\alpha f)(x) & =\left\langle x, \alpha x^{\prime}\right\rangle \triangleq \alpha\left\langle x, x^{\prime}\right\rangle \\
& =\alpha f(x)
\end{aligned}
$$

Theorem $1 X^{f}=L(X, F)$ is a vector space over F called the algebraic conjugate of X.

Algebraic Conjugate Basis

Theorem 2 Let X be a vector space with basis $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ and let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of arbitrarily chosen scalars. Then there is a unique linear functional $x^{\prime} \in X^{f}$ such that $\left\langle e_{i}, x^{\prime}\right\rangle=\alpha_{i}$ for $i=1$..n.
Pf. (\exists) For every $x \in X$, we have unique scalars ξ_{i} such that $x=\sum_{n} \xi_{i} e_{i}$. Define $x^{\prime} \in X^{f}$ by $\left\langle x, x^{\prime}\right\rangle=\sum_{n} \alpha_{i} \xi_{i}$. If $x=e_{i}$ for some i, then $\xi_{i}=1$ and $\xi_{j}=0$ for every $j \neq i$. Hence $\left\langle x, x^{\prime}\right\rangle=\alpha_{i}$; i.e., $\left\langle e_{i}, x^{\prime}\right\rangle=\alpha_{i}$.
(!) Suppose $\left\langle e_{i}, x_{1}^{\prime}\right\rangle=\alpha_{i}$ and $\left\langle e_{i}, x_{2}^{\prime}\right\rangle=\alpha_{i}$ for $i=1$..n. Then $\left\langle e_{i}, x_{1}^{\prime}\right\rangle-\left\langle e_{i}, x_{2}^{\prime}\right\rangle=0$ for $i=1$..n, and so $\left\langle e_{i}, x_{1}^{\prime}-x_{2}^{\prime}\right\rangle=0$ for $i=1 . . n$. This implies that $x_{1}^{\prime}=x_{2}^{\prime}$.
Definition 3 (Kronecker Delta) Set $\delta_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$.

