Conjugate Dimension Theorem

Theorem 1 Let *X* be a finite dimensional vector space with basis $\mathcal{B} = \{e_1, \ldots, e_n\}$. Then there exists a unique basis $\mathcal{B}' = \{e'_1, \ldots, e'_n\}$ for X^f such that $\langle e_i, e'_j \rangle = \delta_{ij}$; we call \mathcal{B}' the dual basis of \mathcal{B} . Further $\dim(X) = n = \dim(X^f)$.

Pf. There exists a unique set of linear functionals $\mathcal{B}' = \{e'_j\}$ such that $\langle e_i, e'_j \rangle = \delta_{ij}$ for i, j = 1..n which are found by applying Thm **??** to the sets $A_j = \{\delta_{ij} | j = 1..n\}$.

 $(\mathcal{B}' \text{ is linearly independent})$ Since $\sum \beta_i e'_i = 0$ implies

$$0 = \left\langle e_j, \sum_i \beta_i e'_i \right\rangle = \sum_i \beta_i \langle e_j, e'_i \rangle = \sum_i \beta_i \delta_{ij} = \beta_j$$

Conjugate Dimension Theorem, II

(Pf.) (\mathcal{B}' spans X^f) Let $x' \in X^f$ and define $\alpha_i = \langle e_i, x' \rangle$. (This form is often called a *projection*.) For $x \in X$, there are scalars so that $x = \sum_i \xi_i e_i$. Then

$$\langle x, x' \rangle = \left\langle \sum_{i} \xi_{i} e_{i}, x' \right\rangle = \sum_{i} \langle \xi_{i} e_{i}, x' \rangle = \sum_{i} \xi_{i} \langle e_{i}, x' \rangle = \sum_{i} \xi_{i} \alpha_{i}$$

It also follows that $\langle x, e'_j \rangle = \sum_i \xi_i \langle e_i, e'_j \rangle = \xi_j$. Combine these two results to obtain

$$\langle x, x' \rangle = \sum_{i} \alpha_i \langle x, e'_i \rangle = \left\langle x, \sum_{i} \alpha_i e'_i \right\rangle$$

which gives us $x' = \sum_i \alpha_i e'_i$.

(Go Back)