Conjugate Dimension Theorem

Theorem 1 Let X be a finite dimensional vector space with basis $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$. Then there exists a unique basis $\mathcal{B}^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ for X^{f} such that $\left\langle e_{i}, e_{j}^{\prime}\right\rangle=\delta_{i j} ;$ we call \mathcal{B}^{\prime} the dual basis of \mathcal{B}. Further $\operatorname{dim}(X)=n=\operatorname{dim}\left(X^{f}\right)$.

Pf. There exists a unique set of linear functionals $\mathcal{B}^{\prime}=\left\{e_{j}^{\prime}\right\}$ such that $\left\langle e_{i}, e_{j}^{\prime}\right\rangle=\delta_{i j}$ for $i, j=1 . . n$ which are found by applying Thm ?? to the sets $A_{j}=\left\{\delta_{i j} \mid j=1 . . n\right\}$.
(\mathcal{B}^{\prime} is linearly independent) Since $\sum \beta_{i} e_{i}^{\prime}=0$ implies

$$
0=\left\langle e_{j}, \sum_{i} \beta_{i} e_{i}^{\prime}\right\rangle=\sum_{i} \beta_{i}\left\langle e_{j}, e_{i}^{\prime}\right\rangle=\sum_{i} \beta_{i} \delta_{i j}=\beta_{j}
$$

Conjugate Dimension Theorem, II

(Pf.) $\left(\mathcal{B}^{\prime}\right.$ spans $\left.X^{f}\right)$ Let $x^{\prime} \in X^{f}$ and define $\alpha_{i}=\left\langle e_{i}, x^{\prime}\right\rangle$. (This form is often called a projection.) For $x \in X$, there are scalars so that $x=\sum_{i} \xi_{i} e_{i}$. Then
$\left\langle x, x^{\prime}\right\rangle=\left\langle\sum_{i} \xi_{i} e_{i}, x^{\prime}\right\rangle=\sum_{i}\left\langle\xi_{i} e_{i}, x^{\prime}\right\rangle=\sum_{i} \xi_{i}\left\langle e_{i}, x^{\prime}\right\rangle=\sum_{i} \xi_{i} \alpha_{i}$
It also follows that $\left\langle x, e_{j}^{\prime}\right\rangle=\sum_{i} \xi_{i}\left\langle e_{i}, e_{j}^{\prime}\right\rangle=\xi_{j}$. Combine these two results to obtain

$$
\left\langle x, x^{\prime}\right\rangle=\sum_{i} \alpha_{i}\left\langle x, e_{i}^{\prime}\right\rangle=\left\langle x, \sum_{i} \alpha_{i} e_{i}^{\prime}\right\rangle
$$

which gives us $x^{\prime}=\sum_{i} \alpha_{i} e_{i}^{\prime}$.
(Go Back)

