Algebraic Transpose

Definition 1 (Algebraic Transpose) Let $S \in L(X, Y)$.

Then $S^T: Y^f \to X^F$ given by $\langle x, S^T y' \rangle = \langle Sx, y' \rangle$ is the algebraic transpose of S.

Example 1 Let $X = \mathbb{R}^3$ and $Y = \mathbb{R}^2$. Define $S \in L(\mathbb{R}^3, \mathbb{R}^2)$

by
$$y = S(x) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $y' \in Y^f$ by $\langle y, y' \rangle = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$.

Then $x' = S^T(y')$ is found by

$$\langle x, x' \rangle = \langle x, S^T y' \rangle = \langle Sx, y' \rangle$$

$$\langle x, x' \rangle = \langle \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, y' \rangle$$

$$\langle x, x' \rangle = \langle \begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \end{bmatrix}, y' \rangle$$

$$\langle x, x' \rangle = x_1 + 2x_2 + x_3$$

$$x'(x) = (S^T(y'))(x)$$

$$x'(x) = y'(S(x))$$

$$x'(x) = y'(\begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \end{bmatrix})$$

$$x'(x) = x_1 + 2x_2 + x_3$$

Hence $S^{T}(y'_{1}) = x'$ with $x'(x) = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$.

The Space of Algebraic Transposes

Theorem 1 Let S^T be the algebraic transpose of S where $S \in L(X,Y)$. Then $S^T \in L(Y^f,X^f)$.

Pf. (Calculation.)

1.
$$S^T(y_1' + y_2') = S^T(y_1') + S^T(y_2')$$
:

$$\langle x, S^T(y_1' + y_2') \rangle = \langle Sx, (y_1' + y_2') \rangle = \langle Sx, y_1' \rangle + \langle Sx, y_2' \rangle$$
$$= \langle x, S^T y_1' \rangle + \langle x, S^T y_2' \rangle$$

2.
$$S^T(\alpha y') = \alpha S^T(y')$$
:

$$\langle x, S^T(\alpha y') \rangle = \langle Sx, \alpha y' \rangle = \alpha \langle Sx, y' \rangle$$

= $\alpha \langle x, S^T(y') \rangle = \langle x, \alpha S^T(y') \rangle$

Algebra of Algebraic Transposes

Theorem 2 Let I be the identity transform of L(X,X). Then I^T is the identity transform of $L(X^f,X^f)$.

Theorem 3 Let 0 be the zero transform of L(X,Y). Then 0^T is the zero transform of $L(Y^f,X^f)$.

Theorem 4 Let $R, S \in L(X, Y)$ and $T \in L(Y, Z)$ and let R^T , S^T , and T^T be the respective transposes. Then

1.
$$(R+S)^T = R^T + S^T$$

2.
$$(TS)^T = S^T T^T$$

Exercise 3.52.32 (Pg. 113.) Prove the theorems.

(Go Back)