22. Quadratic Forms & Inner Products

Theorem 48 Let g be a bilinear functional. Then

$$\frac{g(x,y)+g(y,x)}{2} = \tilde{g}\left(\frac{x+y}{2}\right) - \tilde{g}\left(\frac{x-y}{2}\right)$$

 $\mathbb C$ and g be a bilinear functional on X. Then **Theorem 49 (Polarization)** Let X be a vector space over

$$g(x,y) = \left[\tilde{g}\left(\frac{x+y}{2}\right) - \tilde{g}\left(\frac{x-y}{2}\right)\right] + i\left[\tilde{g}\left(\frac{x+iy}{2}\right) - \tilde{g}\left(\frac{x-iy}{2}\right)\right]$$

Pfs. ✓

Intro to Linear Algebra MAT 5230 - p. 78/8

"Symmetry is Real"

complex vector space X. If $\tilde{g} = h$, then g = h**Theorem 50** Let g and h be bilinear functionals on the

space X is symmetric iff \tilde{g} is real. **Theorem 51** A bilinear functional g on a complex vector

 $ilde{g}(x) = ilde{g}(x)$. Hence $ilde{g}$ is real. a **Pf**. (\Rightarrow) Let g be symmetric, then g(x,y)=g(y,x) so that theorem, h=g, and hence g(x,y)=g(y,x). That is g is $h(x)=\tilde{g}(x,x)=g(x,x)=\tilde{g}(x);$ i.e., $\tilde{h}=\tilde{g}.$ By the previous (\Leftarrow) If \tilde{g} is real, set $h(x,y)=\overline{g}(y,x)$. Then

$$a z = \overline{z} \Rightarrow x + iy = x - iy \Rightarrow y = 0 \Rightarrow z \in \mathbb{R}.$$

symmetric

Inner Product

Ex. Work through example 3.6.18 on pg. 117.

Definition 32 (Inner Product) A bilinear functional g is an inner product iff

- 1. g is strictly positive
- g(x,x) > 0 whenever $x \neq 0$

2. g is symmetric

$$g(x,y) = g(y,x)$$

Definition 33 (Inner Product) (Alternate Definition) A function $(\cdot,\cdot):X\times X\to\mathbb{C}$ is an inner product iff

- 1. (x,x) > 0 whenever $x \neq 0$ and (0,0) = 0
- **2.** (x,y) = (y,x)
- 3. $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$
- 4. $(x, \alpha y + \beta z) = \bar{\alpha}(x, y) + \beta(x, z)$

Intro to Linear Algebra MAT 5230 – p. 80/8

Inner Product Space

product subspace. *product space with the restricted inner product is an* inner *product is an* inner product space. A subspace of an inner **Definition 34** A complex vector space with an inner

then $x \perp A$. vectors x and y are orthogonal, written as $x \perp y$, iff **Definition 35** Let X be an inner product space. Two (x,y)=0. If x is orthogonal to every vector in a set $A\subseteq X$,

Example Set 22

- Let $X = \mathbb{R}^2$ and let $(x,y) = x_1y_1 + x_2y_2$. Then $\{X; (\cdot, \cdot)\}$ is a real inner product space.
- complex inner product space. Let $X=\mathbb{C}^n$ and let $(u,v)=\sum_n u_i\overline{v_i}$. Then $\{X;(\cdot,\cdot)\}$ is a

(Go to TOC)