Projection "Symmetry"

Definition 37 $P \in L(X, X)$ *is* idempotent *iff* $P^2 = P$.

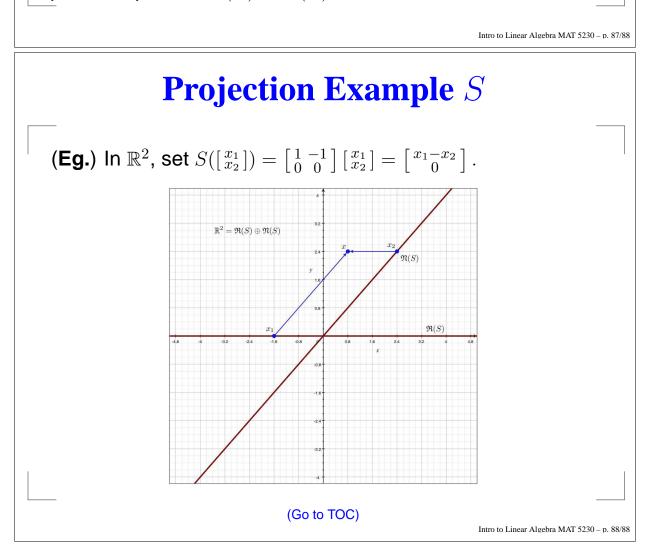
Theorem 54 *P* is projection on X_1 along X_2 iff (I - P) is a projection on X_2 along X_1 .

Corollary 55 If *P* is projection, then $X = \Re(P) \oplus \Re(P)$

Example Set 27 Let $X = \mathbb{R}^2$.

- Set $R(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$. Is *R* a projection?
- Set $S(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 x_2 \\ 0 \end{bmatrix}$. Is S a projection?
- Set $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2x_2 \end{bmatrix}$. Is *T* a projection?

Definition 38 *P* is an orthogonal projection on an inner product space iff $\Re(P) \perp \Re(P)$.



24. Projections

Definition 36 Let $X = X_1 \oplus X_2$ and let $x = x_1 + x_2$ be the unique representation of $x \in X$ relative to $X_1 \oplus X_2$. Then define the mapping *P* by $P(x) = x_1$. We call *P* the projection on X_1 along X_2 .

Theorem 52 Let $X = X_1 \oplus X_2$ and P be the projection on X_1 along X_2 . Then

- 1. $P \in L(X, X)$ and $P \in L(X, X_1)$
- **2.** $\Re(P) = X_1$

3.
$$\mathfrak{N}(P) = X_2$$

Pf. √

Example 25 Let $X = \mathbb{R}^2$ and $P([x_1, x_2]) = x_2$.

Intro to Linear Algebra MAT 5230 - p. 85/88

Projections, II

Example 26 Let $X = \mathbb{P}^3$ and $P(\sum_{i=0}^{3} \alpha_i x^i) = \alpha_0 + \alpha_2 x^2$.

Theorem 53 Let $P \in L(X, X)$. Then P is a projection on $\mathfrak{R}(P)$ along $\mathfrak{N}(P)$ iff $P^2 = P$.

Pf. (\Rightarrow) Suppose that *P* is the projection on $\Re(P)$ along $\Re(P)$. Then $X = \Re(P) \oplus \Re(P)$. Let $x = x_1 + x_2$. Then $P^2(x) = P(P(x_1 + x_2)) = P(x_1) = x_1$ Hence $P^2 = P$. (\Leftarrow) Now suppose that $P^2 = P$. (i) Let $y \in \Re(P)$. Then $\exists x \in X$ so that P(x) = y. Whence P(P(x)) = P(y). But $P^2 = P$, so P(P(x)) = P(x) = y; i.e. P(y) = y. If *y* is also in $\Re(P)$, then P(y) = 0 which implies that y = 0. Hence $\Re(P) \cap \Re(P) = \{0\}$. (ii) For $x \in X$, x = P(x) + (I - P)(x). Set $x_1 = P(x)$ and $x_2 = (I - P)(x) = x - x_1$. Thence *X* is equal to $X_1 \oplus X_2$ with *P* being the projection on X_1 along X_2 .