26. Vector Spaces & Matrices

let $\dim(X) = n < \infty$. **Background**. Let X be a vector space over the field F and

- Then $X \cong F^n$
- Then, given a basis \mathcal{B}_X , each $x \in X$ can be written as $x = [\alpha_1, \dots, \alpha_n]_{\mathcal{B}_X}$ in "basis order" (row or col format a)
- completely determines T(x) for any $x \in X$. Let $T \in L(X, Y)$. T's action on \mathcal{B}_X , i.e., the set $T(\mathcal{B}_X)$,
- Let \mathcal{B}_Y be a basis for Y. Then there is a matrix T based on \mathcal{B}_X and \mathcal{B}_Y , so that

$$y = T(x) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \times \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \times \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

^a "Column" and "row" vectors are artifices to aid the arithmetic.

Intro to Linear Algebra MAT 5230 - p. 93/107

Examples and T = [T]

Example Set 28

- 1. Let $X = \mathbb{R}^2$. Then $[1, 2]_{\{[1,0],[0,1]\}} = [-1, 1]_{\{[1,1],[2,3]\}}$.
- Let $X=\mathbb{P}^2$ with the "standard basis" $\{e_i=t^i\}$. $x = [1, 2, 3] = 1 + 2t + 3t^2$
- standard basis $\{1, t, t^2, t^3\}$, Let $D: \mathbb{P}^3 \to \mathbb{P}^3$ be differentiation. Then, with the

$$D\left(\begin{bmatrix} \alpha \\ \beta \\ \delta \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} \alpha \\ \beta \\ \delta \end{bmatrix} = \begin{bmatrix} \beta \\ 2\gamma \\ 3\delta \end{bmatrix}$$

being the projection on the ith coordinate of Y w.r.t. \mathcal{B}_Y . Definition 40 (The matrix of T) If $\mathcal{B}_X = \{e_j\}$ and $\mathcal{B}_Y = \{f_i\}$, then $\mathbf{T} = [a_{ij}]$ where $a_{ij} = \operatorname{proj}_i(T(e_j))$ with $\operatorname{proj}_i : Y \to Y$

The Matrix of T

 $= [x_1 - x_2, x_1 + x_2].$ Example Set 29 Let $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ given by $T([x_1, x_2])$

- 1. Use the standard basis for both. Then $T = \begin{bmatrix} +1 & -1 \\ +1 & +1 \end{bmatrix}$.
- Use $\mathcal{B}_X = \{[1,1],[2,3]\}$ and $\mathcal{B}_Y = \{[1,2],[4,3]\}$. Then $\mathbf{T} = \left[\frac{\frac{12}{5}}{\frac{37}{5}} \frac{2}{\frac{5}{5}} \right]$.
- —We now return you to the regularly scheduled program.-

let $\mathcal{B} = \{e_1, \dots, e_n\}$ be a basis for X. Then there are unique scalars ξ_j such that $x = \sum_j \xi_j$. Write x in coordinate **Definition 41 (Coordinate representation)** Let $x \in X$ and

representation with respect to the basis $\mathcal B$ as x=

Intro to Linear Algebra MAT 5230 - p. 95/107

The Transition Matrix

 \mathbb{R}^4 . Set $\mathcal{B}^* = \{[1, 2, 1, 0], [3, 3, 3, 0], [2, -10, 0, 0], [-2, 1, -6, 2]\}$. Then, for $x \in \mathbb{R}^4$, define $T_{\mathcal{B}^* \to \mathcal{B}}$ by $[e_1 \dots e_4]$ so **Example 30** Let $\mathcal{B} = \{e_1, \dots, e_4\}$ be the standard basis for

$$[x]_{\mathcal{B}} = \begin{bmatrix} 1 & 3 & 2 & -2 \\ 2 & 3 & -10 & 1 \\ 1 & 3 & 0 & -6 \\ 0 & 0 & 0 & 2 \end{bmatrix} \times [x]_{\mathcal{B}^*}$$

Hence

$$[x]_{\mathcal{B}^*} = \begin{bmatrix} 1 & 3 & 2 & -2 \\ 2 & 3 & -10 & 1 \\ 1 & 3 & 0 & -6 \\ 0 & 0 & 2 \end{bmatrix} \times [x]_{\mathcal{B}} = \begin{bmatrix} 5 & 1 & -6 & -\frac{27}{2} \\ -\frac{5}{3} & -\frac{1}{3} & \frac{7}{3} & \frac{11}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} & -1 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \times [x]_{\mathcal{B}}$$

coordinates? Can of cake: use **Query**: How is a vector in \mathcal{B}_1 coordinates expressed in \mathcal{B}_2

$$T_{\mathcal{B}_1 \to \mathcal{B}_2} = T_{\mathcal{B}_2 \to \mathcal{B}}^{-1} \times T_{\mathcal{B}_1 \to \mathcal{B}}$$

(Go to TOC)