29. Similarity & Equivalence

and $\dim(Y) = m$. **Ab hinc**: X and Y are vector spaces over F with $\dim X = n$

 $\mathcal{B}_X' = \{e_1', \dots, e_n'\}$ is a basis for X iff \mathbf{P} is nonsingular. **Theorem 61** Let $\mathcal{B}_X = \{e_1, \dots, e_n\}$ be a basis for X and let $\mathbf{P} = [p_{ij}]$ be an $n \times n$ matrix. Set $e_k' = \sum_j p_{jk} e_j$. Then

Pf. Calculation based on the linear independence of \mathcal{B}_X

matrix of \mathcal{B}'_X w.r.t \mathcal{B}_X . **Definition 43** Let P be the matrix of Thm 61, then P is the

Theorem 62 P is the matrix of \mathcal{B}_X' w.r.t \mathcal{B}_X iff \mathbf{P}^{-1} is the matrix of \mathcal{B}_X w.r.t \mathcal{B}_X' .

Pf. Exercise.

Intro to Linear Algebra MAT 5230 - p. 103/107

Similarity of Matrices

the matrix of \mathcal{B}_X'' w.r.t \mathcal{B}_X' . Then PQ is the matrix of \mathcal{B}_X'' w.r.t **Theorem 63** Let P be the matrix of \mathcal{B}'_X w.r.t \mathcal{B}_X and Q be

Pf. Exercise.

coordinates. $x \in X$ be \mathbf{x} in \mathcal{B}_X coordinates. Then $\mathbf{P}\mathbf{x}' = \mathbf{x}$ gives x in \mathcal{B}_X' **Theorem 64** Let P be the matrix of \mathcal{B}'_X w.r.t \mathcal{B}_X and let

Pf. Exercise.

$$\mathbf{x} = \mathbf{P}\mathbf{x}' \xrightarrow{\mathbf{A}} \mathbf{y} = \mathbf{A}\mathbf{x}$$

$$\uparrow \mathbf{P} \qquad \qquad \downarrow \mathbf{Q}$$

$$\mathbf{x}' \qquad \xrightarrow{\mathbf{A}'} \mathbf{y}' = \mathbf{Q}\mathbf{y}$$

$$= \mathbf{Q}\mathbf{A}\mathbf{P}\mathbf{x}'$$

(Go to TOC)