30. Equivalence of Transformations

Theorem 65 Let $A \in L(X,Y)$ where

- A has matrices $\mathbf{A}_{\mathcal{B}_X \to \mathcal{B}_Y}$, and $\mathbf{A}'_{\mathcal{B}'_X \to \mathcal{B}'_Y}$, resp
- P is the matrix of \mathcal{B}_X' w.r.t. \mathcal{B}_X and Q of \mathcal{B}_Y' w.r.t. \mathcal{B}_Y

Then A' = QAP.

<u>T</u>

$$Ae'_{i} = A \cdot \sum_{k} p_{ki} e_{k} = \sum_{k} p_{ki} Ae_{k} = \sum_{k} p_{ki} \left(\sum_{l} a_{lk} f_{l} \right)$$
$$= \sum_{k} p_{ki} \left(\sum_{l} a_{lk} \left[\sum_{j} q_{jl} f'_{j} \right] \right) = \sum_{k} \sum_{l} \sum_{j} q_{jl} a_{lk} p_{ki} \cdot f'_{j}$$

Whence

$$a'_{ij} = \sum_{l} \sum_{k} q_{il} a_{lk} p_{kj}$$

Intro to Linear Algebra MAT 5230 - p. 105/107

Definition of Equivalence

that $A' = Q_m \cdot A \cdot P_n$. Equivalence is written as $A' \sim A$ iff there are nonsingular square matrices \mathbf{P}_n and \mathbf{Q}_m such **Definition 44** Two $m \times n$ matrices A and A' are equivalent

Theorem 66 Matrix equivalence is an equivalence relation. l.e., \sim is reflexive, symmetric, and transitive

Pf. Exercise.

Theorem 67 Let A and $B \in \mathfrak{M}_{m,n}$. Then

- A is equivalent to $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ where $r = \operatorname{rank}(A)$.
- 2. $A \sim B$ iff rank(A) = rank(B).

Equivalence Example

Example 32 Consider $A \in L(\mathbb{R}^4, \mathbb{R}^5)$.

- 1. Show that A' = QAP.
- 2. Find the matrix $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ equivalent to both ${\bf A}$ and ${\bf A}'$.

(Go to TOC)

Intro to Linear Algebra MAT 5230 - p. 107/107