Eigenvalue & Eigenvector

Definition 1 Let $A \in L(X, X)$. A scalar λ such that there is a nonzero $x \in X$ for which $Ax = \lambda x$ is an eigenvalue and the corresponding x is an eigenvector.

Definition 2 The polynomial $p(\lambda) = |A - \lambda I|$ is the characteristic polynomial of *A*.

Theorem 2 (Cayley-Hamilton) Let $A \in L(X, X)$. Then p(A) = 0.

Definition 3 Let $A \in L(X, X)$. Then the subspace Y is an invariant subspace under A iff $A(Y) \subseteq Y$; i.e., $\forall y \in Y$, we have $Ay \in Y$.

Definition 4 Set $\mathfrak{N}_{\lambda}(A) = \mathfrak{N}_{\lambda} = \mathfrak{N}(A - \lambda I)$.

Intro to Linear Algebra MAT 5230, §101 - p. 2/

32. Determinants & Invariants

Recall the following **Theorem 1** Let $A \in L(X, X)$.

- $|A| \neq 0$ iff A is nonsingular
- $|A \cdot B| = |A| \cdot |B|$
- $|A^{-1}| = |A|^{-1}$
- $|\alpha A| = \alpha^n |A|$ where n = dim(A)

• |A| = 0 iff

- A has a row/column of zeros
- A has two identical rows/columns
- A has a row/column that is a linear combination of other rows/columns
- $A\mathbf{x} = \mathbf{b}$ has nonunique solutions

Reduced Linear Transformation

Theorem 3 Let $A \in L(X, X)$. Then $X, \mathfrak{R}(A), \mathfrak{N}(A)$, and $\{0\}$ are all invariant subspaces under A.

Example 1 Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Then $\{0\}$. $\mathfrak{N}(A) = \langle \begin{bmatrix} 2 \\ -1 \end{bmatrix} \rangle, \mathfrak{R}(A) = \langle \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rangle$, and \mathbb{R}^2 are all invariant.

Example 2 (Exercise.) Let $B: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 2 & 0 \end{bmatrix}$. Then $\{0\}, \mathfrak{N}(B) = \langle ? \rangle, \mathfrak{R}(B) = \langle ? \rangle$, and \mathbb{R}^3 are all invariant.

Theorem 4 Let λ be an eigenvalue of $A \in L(X, X)$. Then \mathfrak{N}_{λ} is invariant. (Exercise.)

Definition 5 Let $X = Y \oplus Z$ be such that both Y and Z are invariant subspaces under $A \in L(X, X)$. Then A is reduced by Y and Z and A can take form $\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$.