Eigenvalue \& Eigenvector

Definition 1 Let $A \in L(X, X)$. A scalar λ such that there is a nonzero $x \in X$ for which $A x=\lambda x$ is an eigenvalue and the corresponding x is an eigenvector.

Definition 2 The polynomial $p(\lambda)=|A-\lambda I|$ is the characteristic polynomial of A.

Theorem 2 (Cayley-Hamilton) Let $A \in L(X, X)$. Then $p(A)=0$.

Definition 3 Let $A \in L(X, X)$. Then the subspace Y is an invariant subspace under A iff $A(Y) \subseteq Y$; i.e., $\forall y \in Y$, we have $A y \in Y$.

Definition 4 Set $\mathfrak{N}_{\lambda}(A)=\mathfrak{N}_{\lambda}=\mathfrak{N}(A-\lambda I)$.

32. Determinants \& Invariants

Recall the following
Theorem 1 Let $A \in L(X, X)$.

- $|A| \neq 0$ iff A is nonsingular
- $|A \cdot B|=|A| \cdot|B|$
- $\left|A^{-1}\right|=|A|^{-1}$
- $|\alpha A|=\alpha^{n}|A|$ where $n=\operatorname{dim}(A)$
- $|A|=0$ iff
- A has a row/column of zeros
- A has two identical rows/columns
- A has a row/column that is a linear combination of other rows/columns
- $A \mathrm{x}=\mathrm{b}$ has nonunique solutions

Reduced Linear Transformation

Theorem 3 Let $A \in L(X, X)$. Then $X, \mathfrak{R}(A), \mathfrak{N}(A)$, and $\{0\}$ are all invariant subspaces under A.
Example 1 Let $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\left[\begin{array}{ll}1 & 2 \\ 2\end{array}\right]$. Then $\{0\}$. $\mathfrak{N}(A)=\left\langle\left[{ }_{-1}^{2}\right]\right\rangle, \mathfrak{R}(A)=\left\langle\left[\begin{array}{l}1 \\ 2\end{array}\right]\right.$, and \mathbb{R}^{2} are all invariant.
Example 2 (Exercise.) Let $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0\end{array}\right]$. Then $\{0\}, \mathfrak{N}(B)=\langle ?\rangle, \mathfrak{R}(B)=\langle ?\rangle$, and \mathbb{R}^{3} are all invariant.
Theorem 4 Let λ be an eigenvalue of $A \in L(X, X)$. Then \mathfrak{N}_{λ} is invariant. (Exercise.)
Definition 5 Let $X=Y \oplus Z$ be such that both Y and Z are invariant subspaces under $A \in L(X, X)$. Then A is reduced by Y and Z and A can take form $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$.

