33. Eigenvalues & Diagonalization

Ab hinc: X is an *n*-dimensional vector space over F.

Theorem 72 Let $\{\lambda_i | i = 1..p\}$ be a set of distinct eigenvalues of $A \in L(X, X)$ with corresponding nonzero eigenvectors $\mathcal{E} = \{e'_i | i = 1..p\}$. Then \mathcal{E} is linearly independent.

Pf. Assume \mathcal{E} is dependent. Choose the smallest set of vectors from \mathcal{E} such that $0 = \sum_{i=1}^{r} \alpha_i e'_i$ (reordering the $r \leq p$ vectors as needed). Then $0 = A(0) = A(\sum_{i=1}^{r} \alpha_i e'_i)$ which gives $0 = \sum_{i=1}^{r} (\lambda_i \alpha_i e'_i)^{(*)}$. Now $0 = \lambda_r 0 = \lambda_r \sum_{i=1}^{r} \alpha_i e'_i$, or $0 = \sum_{i=1}^{r} \lambda_r \alpha_i e'_i^{(**)}$. Subtract ^(*) from ^(**) to obtain $0 = \sum_{i=1}^{r-1} (\lambda_r - \lambda_i) \alpha_i e'_i$ which contradicts r being minimal. Hence \mathcal{E} is linearly independent.

"Eigenbasis"

Theorem 73 If $A \in L(X, X)$ has *n* distinct eigenvalues, then there is a basis of eigenvectors $\mathcal{B}_e = \{e'_i | i = 1..p\}$ such that the matrix of *A* is $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Pf. Exercise.

Corollary 74 If $A \in L(X, X)$ has *n* distinct eigenvalues, then every matrix for *A* is similar to a diagonal matrix.

Pf. Collect the eigenvectors $\mathcal{E} = \{e'_i | i = 1..n\}$. Set $P = [e'_1, \ldots, e'_n]$. Then $\operatorname{diag}(\lambda_1, \ldots, \lambda_n) = P^{-1}AP$.

Example 35 See the Maple worksheet. (To see what happens without a "cooked" example, enter the following in Maple: with(LinearAlgebra): A := RandomMatrix(5,5, generator=rand(-3..3)); Eigenvectors(A);)

(Go to TOC)

34. "Eigen-Basis" Examples

Example 36

- 1. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in L(\mathbb{R}^3, \mathbb{R}^3)$. Then $p(\lambda) = \lambda^3 2\lambda^2 + \lambda$ (and $m(\lambda) = \lambda^2 - \lambda$) which indicates that A has eigenvalues: 0, 1, 1. The corresponding eigenvectors come from $\mathfrak{N}_{\lambda} = \mathfrak{N}(A - \lambda I)$. So $\mathfrak{N}_0 = \langle \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \rangle$ and $\mathfrak{N}_1 = \langle \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \rangle$. (Found by solving $\begin{bmatrix} 1-\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$ with $\lambda = 0$ and 1, respectively.)
 - (a) Define P and find P^{-1} .
 - (b) Calculate the diagonal matrix $P^{-1}AP$ without using matrix multiplication.

"Eigen-Basis" Examples, II

Example 37

1. Let $B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \in L(\mathbb{R}^3, \mathbb{R}^3)$. Then $p(\lambda) = \lambda^3 - 3\lambda^2$ (and $m(\lambda) = \lambda^3 - 3\lambda^2$) which indicates that B has eigenvalues: 0, 0, and 3. The corresponding eigenvectors come from $\mathfrak{N}_{\lambda} = \mathfrak{N}(B - \lambda I)$. So $\mathfrak{N}_{0} = \langle \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \rangle$ and $\mathfrak{N}_{3} = \langle \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \rangle$. (Found by solving $\begin{vmatrix} 1-\lambda & 1 & 2\\ 1 & 1-\lambda & 2\\ 1 & 0 & 1-\lambda \end{vmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = 0$ with $\lambda = 0$, and 3, respectively.) (a) Explain why P (and so P^{-1}) doesn't exist. (b) Can B be diagonalized? Why or why not? (Solution.)