33. Eigenvalues \& Diagonalization

Ab hinc: X is an n-dimensional vector space over F.
Theorem 72 Let $\left\{\lambda_{i} \mid i=1\right.$..p\} be a set of distinct eigenvalues of $A \in L(X, X)$ with corresponding nonzero eigenvectors $\mathcal{E}=\left\{e_{i}^{\prime} \mid i=1 . . p\right\}$. Then \mathcal{E} is linearly independent.
Pf. Assume \mathcal{E} is dependent. Choose the smallest set of vectors from \mathcal{E} such that $0=\sum_{i=1}^{r} \alpha_{i} e_{i}^{\prime}$ (reordering the $r \leq p$ vectors as needed). Then $0=A(0)=A\left(\sum_{i=1}^{r} \alpha_{i} e_{i}^{\prime}\right)$ which gives $0=\sum_{i=1}^{r}\left(\lambda_{i} \alpha_{i} e_{i}^{\prime}\right)^{(*)}$. Now $0=\lambda_{r} 0=\lambda_{r} \sum_{i=1}^{r} \alpha_{i} e_{i}^{\prime}$, or $0=\sum_{i=1}^{r} \lambda_{r} \alpha_{i} e_{i}^{\prime}{ }^{(* *)}$. Subtract ${ }^{(*)}$ from ${ }^{(* *)}$ to obtain $0=\sum_{i=1}^{r-1}\left(\lambda_{r}-\lambda_{i}\right) \alpha_{i} e_{i}^{\prime}$ which contradicts r being minimal. Hence \mathcal{E} is linearly independent.

"Eigenbasis"

Theorem 73 If $A \in L(X, X)$ has n distinct eigenvalues, then there is a basis of eigenvectors $\mathcal{B}_{e}=\left\{e_{i}^{\prime} \mid i=1\right.$..p $\}$ such that the matrix of A is $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
Pf. Exercise.
Corollary 74 If $A \in L(X, X)$ has n distinct eigenvalues, then every matrix for A is similar to a diagonal matrix.
Pf. Collect the eigenvectors $\mathcal{E}=\left\{e_{i}^{\prime} \mid i=1 . . n\right\}$. Set $P=\left[e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right]$. Then $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=P^{-1} A P$.

Example 35 See the Maple worksheet. (To see what happens without a "cooked" example, enter the following in Maple: with (LinearAlgebra) : A : = RandomMatrix (5,5, generator=rand(-3..3)); Eigenvectors(A);)

34. "Eigen-Basis" Examples

Example 36

1. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \in L\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$. Then $p(\lambda)=\lambda^{3}-2 \lambda^{2}+\lambda$ (and $m(\lambda)=\lambda^{2}-\lambda$) which indicates that A has eigenvalues: $0,1,1$. The corresponding eigenvectors come from $\mathfrak{N}_{\lambda}=\mathfrak{N}(A-\lambda I)$. So $\mathfrak{N}_{0}=\left\langle\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\rangle$ and $\mathfrak{N}_{1}=\left\langle\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\rangle$.
(Found by solving $\left[\begin{array}{ccc}1-\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$ with $\lambda=0$ and
1, respectively.)
(a) Define P and find P^{-1}.
(b) Calculate the diagonal matrix $P^{-1} A P$ without using matrix multiplication.

"Eigen-Basis" Examples, II

Example 37

1. Let $B=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 \\ 1 & 0\end{array}\right] \in L\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$. Then $p(\lambda)=\lambda^{3}-3 \lambda^{2}$ (and $m(\lambda)=\lambda^{3}-3 \lambda^{2}$) which indicates that B has eigenvalues: 0,0 , and 3 . The corresponding eigenvectors come from $\mathfrak{N}_{\lambda}=\mathfrak{N}(B-\lambda I)$. So $\mathfrak{N}_{0}=\left\langle\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right\rangle$ and $\mathfrak{N}_{3}=\left\langle\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\rangle$.
(Found by solving $\left[\begin{array}{cccc}1-\lambda & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 0 & 1 & 1\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$ with $\lambda=0$, and 3, respectively.)
(a) Explain why P (and so P^{-1}) doesn't exist.
(b) Can B be diagonalized? Why or why not?
(Solution.)
