34. "Eigen-Basis" Examples

Example 36

- 1. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in L(\mathbb{R}^3, \mathbb{R}^3)$. Then $p(\lambda) = \lambda^3 2\lambda^2 + \lambda$ (and $m(\lambda) = \lambda^2 - \lambda$) which indicates that A has eigenvalues: 0, 1, 1. The corresponding eigenvectors come from $\mathfrak{N}_{\lambda} = \mathfrak{N}(A - \lambda I)$. So $\mathfrak{N}_0 = \langle \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \rangle$ and $\mathfrak{N}_1 = \langle \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \rangle$. (Found by solving $\begin{bmatrix} 1-\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$ with $\lambda = 0$ and 1, respectively.)
 - (a) Define P and find P^{-1} .
 - (b) Calculate the diagonal matrix $P^{-1}AP$ without using matrix multiplication.

"Eigen-Basis" Examples, II

Example 37

1. Let $B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \in L(\mathbb{R}^3, \mathbb{R}^3)$. Then $p(\lambda) = \lambda^3 - 3\lambda^2$ (and $m(\lambda) = \lambda^3 - 3\lambda^2$) which indicates that B has eigenvalues: 0, 0, and 3. The corresponding eigenvectors come from $\mathfrak{N}_{\lambda} = \mathfrak{N}(B - \lambda I)$. So $\mathfrak{N}_{0} = \langle \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \rangle$ and $\mathfrak{N}_{3} = \langle \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \rangle$. (Found by solving $\begin{vmatrix} 1-\lambda & 1 & 2\\ 1 & 1-\lambda & 2\\ 1 & 0 & 1-\lambda \end{vmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = 0$ with $\lambda = 0$, and 3, respectively.) (a) Explain why P (and so P^{-1}) doesn't exist. (b) Can B be diagonalized? Why or why not? (Solution.)