35. Geometric Multiplicity

Definition 50 Let λ be an eigenvalue of $A \in L(X, X)$. Then

- the algebraic multiplicity of λ is the multiplicity as a root of the characteristic polynomial $p(\lambda)$;
- the geometric multiplicity of λ is the dimension of the nullspace $\mathfrak{N}_{\lambda}=\mathfrak{N}(A-\lambda I)$.
Example 38 Let $X=\mathbb{R}^{3}$. Each matrix below has characteristic polynomial $p(\lambda)=-(\lambda-2)^{3}$.

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

$$
a l g=3, g e o=3 \quad a l g=3, g e o=2 \quad a l g=3, g e o=1
$$

$$
\text { iev }=\left\{e_{1}, e_{2}, e_{3}\right\} \quad \text { iev }=\left\{e_{1}, e_{3}\right\} \quad \text { iev }=\left\{e_{1}\right\}
$$

Reduction Partition

Theorem 75 Let $X=X_{1} \oplus X_{2}$ be a direct sum that reduces $A \in L(X, X)$; i.e., A is invariant on X_{1} and X_{2}. Then there is a basis \mathcal{B} for X such that

$$
A_{\mathcal{B}}=\left[\begin{array}{c:c}
A_{1} & 0 \\
\hdashline 0 & A_{2}
\end{array}\right]
$$

Theorem 76 Let $X=X_{1} \oplus \cdots \oplus X_{p}$ be a direct sum that reduces $A \in L(X, X)$; i.e., $A_{k}=\left.A\right|_{X_{k}}$ is invariant on X_{k} for $k=1$..p. Then there is a basis \mathcal{B} for X such that

$$
A_{\mathcal{B}}=\left[\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \\
0 & A_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \vdots
\end{array}\right] \quad \text { and } \quad\left|A_{\mathcal{B}}\right|=\prod_{k=1}^{p}\left|A_{k}\right|
$$

Minimal Polynomial

Example 39 If $A \in L(X, X)$ has n distinct eigenvalues in F, then $X=\mathfrak{N}_{\lambda_{1}} \oplus \cdots \oplus \mathfrak{N}_{\lambda_{n}}$ and $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Definition 51 Let $A \in L(X, X)$. Then there is a monic polynomial $m(\lambda)$, the minimal polynomial, such that

- $m(A)=0$
- any polynomial m^{\prime} with $m^{\prime}(A)=0$ has $\operatorname{deg}(m) \leq \operatorname{deg}\left(m^{\prime}\right)$

Example 40 The three matrices of Example 38 have

$$
\begin{array}{llll}
{\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]} & {\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]} \\
m(\lambda)=(\lambda-2) & m(\lambda)=(\lambda-2)^{2} & m(\lambda)=(\lambda-2)^{3}
\end{array}
$$

Properties of the Minimal Polynomial

Theorem 77 The minimal polynomial $m(\lambda)$ is unique.
Theorem 78 Let $q(\lambda)$ be a polynomial such that $q(A)=0$. Then $m(\lambda) \mid q(\lambda)$.

Corollary 79 The minimal polynomial divides the characteristic polynomial; ;i.e., $m(\lambda) \mid p(\lambda)$.

Theorem 80 The characteristic polynomial divides a power of the minimal polynomial: $p(\lambda) \mid[m(\lambda)]^{n}$ where $n=\operatorname{dim}(X)$.

Corollary $81 m(\lambda)|p(\lambda)|[m(\lambda)]^{n}$.
Proofs. Exercises.

