35. Geometric Multiplicity

Definition 50 Let λ be an eigenvalue of $A \in L(X, X)$. Then

- the algebraic multiplicity of λ is the multiplicity as a root of the characteristic polynomial $p(\lambda)$;
- the geometric multiplicity of λ is the dimension of the nullspace $\mathfrak{N}_{\lambda} = \mathfrak{N}(A \lambda I)$.

Example 38 Let $X = \mathbb{R}^3$. Each matrix below has characteristic polynomial $p(\lambda) = -(\lambda - 2)^3$.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
$$alg = 3, geo = 3 \quad alg = 3, geo = 2 \quad alg = 3, geo = 1$$
$$iev = \{e_1, e_2, e_3\} \qquad iev = \{e_1, e_3\} \qquad iev = \{e_1\}$$

Reduction Partition

Theorem 75 Let $X = X_1 \oplus X_2$ be a direct sum that reduces $A \in L(X, X)$; *i.e.*, A is invariant on X_1 and X_2 . Then there is a basis \mathcal{B} for X such that

$$A_{\mathcal{B}} = \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix}$$

Theorem 76 Let $X = X_1 \oplus \cdots \oplus X_p$ be a direct sum that reduces $A \in L(X, X)$; *i.e.*, $A_k = A|_{X_k}$ is invariant on X_k for k = 1..p. Then there is a basis \mathcal{B} for X such that

$$A_{\mathcal{B}} = \begin{bmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_p \end{bmatrix} \quad \text{and} \quad |A_{\mathcal{B}}| = \prod_{k=1}^p |A_k|$$

Minimal Polynomial

Example 39 If $A \in L(X, X)$ has *n* distinct eigenvalues in *F*, then $X = \mathfrak{N}_{\lambda_1} \oplus \cdots \oplus \mathfrak{N}_{\lambda_n}$ and $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Definition 51 Let $A \in L(X, X)$. Then there is a monic polynomial $m(\lambda)$, the minimal polynomial, such that

- M(A) = 0
- any polynomial m' with m'(A) = 0 has $\deg(m) \le \deg(m')$

Example 40 The three matrices of Example 38 have

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
$$m(\lambda) = (\lambda - 2)^2 \qquad m(\lambda) = (\lambda - 2)^3$$

Properties of the Minimal Polynomial

Theorem 77 The minimal polynomial $m(\lambda)$ is unique.

Theorem 78 Let $q(\lambda)$ be a polynomial such that q(A) = 0. Then $m(\lambda) | q(\lambda)$.

Corollary 79 The minimal polynomial divides the characteristic polynomial; i.e., $m(\lambda) | p(\lambda)$.

Theorem 80 The characteristic polynomial divides a power of the minimal polynomial: $p(\lambda) \mid [m(\lambda)]^n$ where $n = \dim(X)$.

Corollary 81 $m(\lambda) | p(\lambda) | [m(\lambda)]^n$.

Proofs. Exercises.