Finding an "eigen-basis" to diagonalize a matrix

1. Set $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Find $p(\lambda)$ by evaluating $|A-\lambda I|=\left|\begin{array}{ccc}1-\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1-\lambda\end{array}\right|=\lambda^{3}-2 \lambda^{2}+\lambda$ $=\lambda(\lambda-1)^{2}$. Now the eigenvalues are the roots of $p(\lambda)$, so $\Lambda_{A}=\{0,1\}$. To find eigenvectors that span \mathfrak{N}_{λ}, look at $\mathfrak{N}(A-\lambda I)$.
(a) First use $\lambda=0$. Find the nullspace associated with $A-0 I=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ by solving the system $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{1} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. So $x_{1}=x_{3}=0$ and x_{2} is arbitrary. This implies that $\mathfrak{N}_{0}=\left\langle\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\rangle$.
(b) Now use $\lambda=1$. Find the nullspace of $A-1 I=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$ by solving the system $\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ x_{1}-x_{2} \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. So $x_{1}=x_{2}$ and x_{3} is arbitrary. This implies that $\mathfrak{N}_{1}=\left\langle\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\rangle$.
Hence an eigenbasis for \mathbb{R}^{3} w.r.t. A is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
With the vectors in this order, we have $P=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then $P^{-1} A P$ must equal $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
2. Set $B=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 10 & 1\end{array}\right]$. Find $p(\lambda)$ by evaluating $|A-\lambda I|=\lambda^{3}-3 \lambda^{2}=\lambda^{2}(\lambda-3)$. The eigenvalues are the roots of $p(\lambda)$, so $\Lambda_{B}=\{0,3\}$.
(a) First use $\lambda=0$. Find the nullspace associated with $B-0 I=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1\end{array}\right]$ by solving the system $\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}+x_{2}+2 x_{3} \\ x_{1}+x_{2}+2 x_{3} \\ x_{1}+x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. So $x_{2}=-x_{3}=x_{1}$ and x_{1} is arbitrary. This implies that $\mathfrak{N}_{0}=\left\langle\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\rangle$.
(b) Now use $\lambda=3$. Find the nullspace of $B-3 I=\left[\begin{array}{ccc}-2 & 1 & 2 \\ 1 & -2 & 2 \\ 1 & 0 & -2\end{array}\right]$ by solving the system $\left[\begin{array}{ccc}-2 & 1 & 2 \\ 1 & -2 & 2 \\ 1 & 0 & -2\end{array}\right] \cdot\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-2 x_{1}+x_{2}+2 x_{3} \\ x_{1}-2 x_{2}+2 x_{3} \\ x_{1}-2 x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. So $x_{1}=x_{2}=2 x_{3}$ and x_{3} is arbitrary. This implies that $\mathfrak{N}_{3}=\left\langle\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\rangle$.
We do not have a full set of eigenvectors to make a basis. Therefore, there is no nonsingular matrix P that can be used to give $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ from $P^{-1} B P$. In this case, B is called a deficient matrix.

For $A, B \in L(X, X)$ where $\operatorname{dim}(X)=n$, the critical observation is that for A, we have that $\sum_{\lambda \in \Lambda_{A}} \operatorname{dim}\left(\mathfrak{N}_{\lambda}\right)=n$, but for B, we see that $\sum_{\lambda \in \Lambda_{B}} \operatorname{dim}\left(\mathfrak{N}_{\lambda}\right)<n$.

