Finding an "eigen-basis" to diagonalize a matrix

- 1. Set $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Find $p(\lambda)$ by evaluating $|A \lambda I| = \begin{vmatrix} 1-\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1-\lambda \end{vmatrix} = \lambda^3 2\lambda^2 + \lambda$ = $\lambda (\lambda - 1)^2$. Now the eigenvalues are the roots of $p(\lambda)$, so $\Lambda_A = \{0, 1\}$. To find eigenvectors that span \mathfrak{N}_{λ} , look at $\mathfrak{N}(A - \lambda I)$.
 - (a) First use $\lambda = 0$. Find the nullspace associated with $A 0I = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ by solving the system $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. So $x_1 = x_3 = 0$ and x_2 is arbitrary. This implies that $\mathfrak{N}_0 = \langle \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \rangle$.
 - (b) Now use $\lambda = 1$. Find the nullspace of $A 1I = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ by solving the system $\begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. So $x_1 = x_2$ and x_3 is arbitrary. This implies that $\mathfrak{N}_1 = \langle \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \rangle$.

Hence an eigenbasis for \mathbb{R}^3 w.r.t. A is $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \right\}$. With the vectors in this order, we have $P = \begin{bmatrix} 0 & 1 & 0\\1 & 1 & 0\\0 & 0 & 1 \end{bmatrix}$. Then $P^{-1}AP$ must equal $\begin{bmatrix} 0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}$.

- 2. Set $B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$. Find $p(\lambda)$ by evaluating $|A \lambda I| = \lambda^3 3\lambda^2 = \lambda^2 (\lambda 3)$. The eigenvalues are the roots of $p(\lambda)$, so $\Lambda_B = \{0, 3\}$.
 - (a) First use $\lambda = 0$. Find the nullspace associated with $B 0I = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ by solving the system $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + 2x_3 \\ x_1 + x_2 + 2x_3 \\ x_1 + x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. So $x_2 = -x_3 = x_1$ and x_1 is arbitrary. This implies that $\mathfrak{N}_0 = \langle \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \rangle$.
 - (b) Now use $\lambda = 3$. Find the nullspace of $B 3I = \begin{bmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ 1 & 0 & -2 \end{bmatrix}$ by solving the system $\begin{bmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ 1 & 0 & -2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_1 + x_2 + 2x_3 \\ x_1 2x_2 + 2x_3 \\ x_1 2x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. So $x_1 = x_2 = 2x_3$ and x_3 is arbitrary. This implies that $\mathfrak{N}_3 = \langle \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \\ 1 \end{pmatrix} \rangle$.

We do not have a full set of eigenvectors to make a basis. Therefore, there is no nonsingular matrix P that can be used to give $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ from $P^{-1}BP$. In this case, B is called a *deficient* matrix.

For $A, B \in L(X, X)$ where $\dim(X) = n$, the critical observation is that for A, we have that $\sum_{\lambda \in \Lambda_A} \dim(\mathfrak{N}_{\lambda}) = n$, but for B, we see that $\sum_{\lambda \in \Lambda_B} \dim(\mathfrak{N}_{\lambda}) < n$.

(Go Back)