1. Let M_{2} be the set of 2×2 matrices with real entries using the usual matrix multiplication and addition.
(a) Show that M_{2} is a ring.
(b) Show that M_{2} is not a field.
2. Let D_{2} be the set of 2×2 diagonal matrices with real entries using the usual matrix multiplication and addition.
(a) Show that D_{2} is closed under multiplication.
(b) Show that multiplication is commutative in D_{2}.
(c) Show that D_{2} is a ring.
(d) Show that D_{2} is not a field. (Hint: What's a zero-divisor?)
3. Let T_{2} be the set of 2×2 diagonal matrices with real entries having nonzero determinants together with the zero matrix using the usual matrix multiplication and addition.
(a) Is T_{2} a ring?
(b) Is T_{2} a field?
