MAT 5230 Homework

1. Finish the proof of Theorem 3.4.77 (pg 108).
2. Prove Theorem 3.4.78 (pg 108).
3. Define X to be the vector space \mathbb{R}^{3} and Y to be the vector space

$$
\mathbb{P}_{2}^{2}=\left\{p \mid p(x) \text { is a polynomial of degree } 2 \text { with coefficients in } \mathbb{Z}_{2}\right\} .
$$

Then $\mathcal{B}_{X}=\left\{e_{1}=[1,0,0], e_{2}=[0,1,0], e_{3}=[0,0,1]\right\}$ forms the standard basis for X; also $\mathcal{B}_{Y}=\left\{1, x, x^{2}\right\}$ forms the standard basis for $Y=\mathbb{P}_{2}^{2}$.
(a) Find $\operatorname{dim}(X)$.
(b) Find $\operatorname{dim}(Y)$.
(c) True or False: $X \cong Y$.That is, $\mathbb{R}^{3} \cong \mathbb{P}_{2}^{2}$. (Explain your reasoning.)
4. True or False: For $n \in \mathbb{Z}^{+}$, we have $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$. (Explain your reasoning.)

