MAT 5230 Homework

- 1. Finish the proof of Theorem 3.4.77 (pg 108).
- 2. Prove Theorem 3.4.78 (pg 108).
- 3. Define X to be the vector space \mathbb{R}^3 and Y to be the vector space

 $\mathbb{P}_2^2 = \{ p \mid p(x) \text{ is a polynomial of degree } 2 \text{ with coefficients in } \mathbb{Z}_2 \}.$

Then $\mathcal{B}_X = \{e_1 = [1, 0, 0], e_2 = [0, 1, 0], e_3 = [0, 0, 1]\}$ forms the *standard basis* for X; also $\mathcal{B}_Y = \{1, x, x^2\}$ forms the *standard basis* for $Y = \mathbb{P}_2^2$.

- (a) Find $\dim(X)$.
- (b) Find $\dim(Y)$.
- (c) True or False: $X \cong Y$. That is, $\mathbb{R}^3 \cong \mathbb{P}_2^2$. (Explain your reasoning.)
- 4. True or False: For $n \in \mathbb{Z}^+$, we have $\mathbb{C}^n \cong \mathbb{R}^{2n}$. (Explain your reasoning.)