1. Let X be a vector space over F with $x, y \in X$ and $\alpha \in F$.
(a) Prove that $\alpha \cdot 0=0$.
(b) Prove that $\alpha \cdot(x-y)=\alpha \cdot x-\alpha \cdot y$.
2. Let \mathbb{R}_{B}^{∞} be the vector space of bounded real sequences.
(a) Prove that \mathbb{R}_{B}^{∞} is closed under addition and scalar multiplication.
(b) Prove that addition is commutative in \mathbb{R}_{B}^{∞}.
3. Let \mathbb{P}_{3}^{*} be the set of polynomials of degree 3 or less that have constant term equal to 0 ; i.e., $p(x)=$ $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+0$.
(a) Discuss (informally) whether or not \mathbb{P}_{3}^{*} is a vector space.
