MAT 5230

Homework 2

Due: Sept 7

- 1. Let X be a vector space over F with $x, y \in X$ and $\alpha \in F$.
 - (a) Prove that $\alpha \cdot 0 = 0$.
 - (b) Prove that $\alpha \cdot (x y) = \alpha \cdot x \alpha \cdot y$.
- 2. Let \mathbb{R}^∞_B be the vector space of bounded real sequences.
 - (a) Prove that \mathbb{R}^∞_B is closed under addition and scalar multiplication.
 - (b) Prove that addition is commutative in \mathbb{R}^{∞}_B .
- 3. Let \mathbb{P}_3^* be the set of polynomials of degree 3 or less that have constant term equal to 0; i.e., $p(x) = a_3x^3 + a_2x^2 + a_1x + 0$.
 - (a) Discuss (informally) whether or not \mathbb{P}_3^* is a vector space.