Homomorphisms

Definition 1 (Group Homomorphism) Let $\{X; +_X\}$ and $\{Y; +_Y\}$ be two groups with $\rho : X \to Y$. Then ρ is a homomorpism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$

Definition 2 (Ring Homomorphism) Let $\{X; +_X, \cdot_X\}$ and $\{Y; +_Y, \cdot_Y\}$ be two rings with $\rho : X \to Y$. Then ρ is a homomorpism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$
$$\rho(x_1 \cdot x_2) = \rho(x_1) \cdot \rho(x_2)$$

Vector Space Homomorphism

Definition 3 (Linear Transformation) Let X and Y be vector spaces over the same field F. Then the relation $\rho: X \to Y$ is a linear transformation if and only if for every $\alpha \in F$ and $x_1, x_2 \in X$, it follows that:

(1)
$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$

(2)
$$\rho(\alpha \cdot x_1) = \alpha \cdot \rho(x_1)$$

Linear Transformation

Т

(1)

$$\begin{bmatrix} x_{1}, x_{2} \end{bmatrix} \xrightarrow{+} & x_{1} + x_{2} \\ \rho \downarrow & \rho \downarrow \\ \hline \rho \downarrow & \rho \downarrow \\ \hline \rho(x_{1}), \rho(x_{2}) \end{bmatrix} \xrightarrow{+} & \rho(x_{1} + x_{2}) = \\ \rho(x_{1}) + \rho(x_{2}) \\ \hline \rho(x_{1}) + \rho(x_{2}) \\ \hline \rho \downarrow & \rho \downarrow \\ \hline \rho \downarrow & \rho \downarrow \\ \hline \alpha, \rho(x_{1}) \end{bmatrix} \xrightarrow{\cdot} & \rho(\alpha \cdot x_{1}) = \\ \alpha \cdot \rho(x_{1}) \\ \hline \alpha \cdot \rho$$

Intro to Linear AlgebraMAT 5230, §101 – p. 3

Subspace of a Vector Space

Definition 4 (Subspace) Let *X* be a vector space over *F* and let $\emptyset \neq V \subseteq X$. Then *V* is a subspace of *X* iff

1. $\forall u, v \in V$, we have $u + v \in V$ (closed under addition)

2. $\forall \alpha \in F, \forall u \in V, we have \alpha u \in V$ (closed under scalar mult.)

Theorem 1 A subspace V of a vector space X is a vector space. Proof. V is closed under vector addition and scalar multiplication by definition. All remaining vector space properties – with the exception of $0 \in V$ – are inherited from X.

Let $v \in V$ (because $V \neq \emptyset$). Since $0 \in F$, then $0v = 0 \in V$. Thus V is a vector space. \Box

Note. Every vector space has at least 2 subspaces. What are they?