Homomorphisms

Definition 1 (Group Homomorphism) Let $\left\{X ;+_{X}\right\}$ and $\left\{Y ;+_{Y}\right\}$ be two groups with $\rho: X \rightarrow Y$. Then ρ is a homomorpism iff

$$
\rho\left(x_{1}+{ }_{X} x_{2}\right)=\rho\left(x_{1}\right)+_{Y} \rho\left(x_{2}\right)
$$

Definition 2 (Ring Homomorphism) Let $\left\{X ;+_{X}, \cdot x\right\}$ and $\left\{Y ;+_{Y},{ }_{Y}\right\}$ be two rings with $\rho: X \rightarrow Y$. Then ρ is a homomorpism iff

$$
\begin{aligned}
\rho\left(x_{1}+X x_{2}\right) & =\rho\left(x_{1}\right)+_{Y} \rho\left(x_{2}\right) \\
\rho\left(x_{1} \cdot X x_{2}\right) & =\rho\left(x_{1}\right) \cdot Y \rho\left(x_{2}\right)
\end{aligned}
$$

Vector Space Homomorphism

Definition 3 (Linear Transformation) Let X and Y be vector spaces over the same field F. Then the relation $\rho: X \rightarrow Y$ is a linear transformation if and only if for every $\alpha \in F$ and $x_{1}, x_{2} \in X$, it follows that:

$$
\begin{gather*}
\rho\left(x_{1}+X x_{2}\right)=\rho\left(x_{1}\right)+_{Y} \rho\left(x_{2}\right) \tag{1}\\
\rho\left(\alpha \cdot x_{1}\right)=\alpha \cdot \rho\left(x_{1}\right)
\end{gather*}
$$

(2)

Linear Transformation

(1)

$$
\begin{array}{ccc}
{\left[x_{1}, x_{2}\right]} & \stackrel{+}{\longrightarrow} & x_{1}+x_{2} \\
\rho \downarrow \downarrow & & \rho \downarrow \\
{\left[\rho\left(x_{1}\right), \rho\left(x_{2}\right)\right]} & \xrightarrow{+} & \rho\left(x_{1}+x_{2}\right)= \\
& & \rho\left(x_{1}\right)+\rho\left(x_{2}\right)
\end{array}
$$

(2)

$$
\begin{array}{ccc}
{\left[\alpha, x_{1}\right]} & & \cdots \\
\rho \downarrow & & \alpha \cdot x_{1} \\
{\left[\alpha, \rho\left(x_{1}\right)\right]} & \longrightarrow & \rho \downarrow \\
& & \rho\left(\alpha \cdot x_{1}\right)= \\
& & \alpha \cdot \rho\left(x_{1}\right)
\end{array}
$$

Subspace of a Vector Space

Definition 4 (Subspace) Let X be a vector space over F and let $\emptyset \neq V \subseteq X$. Then V is a subspace of X iff

1. $\forall u, v \in V$, we have $u+v \in V$
(closed under addition)
2. $\forall \alpha \in F, \forall u \in V$, we have $\alpha u \in V \quad$ (closed under scalar mult.)

Theorem $1 A$ subspace V of a vector space X is a vector space.
Proof. V is closed under vector addition and scalar multiplication by definition. All remaining vector space properties - with the exception of $0 \in V$ - are inherited from X.
Let $v \in V$ (because $V \neq \emptyset$). Since $0 \in F$, then $0 v=0 \in V$. Thus V is a vector space. \square
Note. Every vector space has at least 2 subspaces. What are they?

