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Now let f(t) € Flr] be of positive degree. If () = g{fYh(t) implies that
either g(¢) is a scalar or A(t) is a scalar, then F(£) is said to be irreducible.
We close the present section with a statement of the fundamental theorem

of algebra.

2.3.16. Theorem. Let f(f) € Fif] be a non-zero polynomial. Let R denote
the field of real numbers and let C denote the field of complex numbers.

(i If F= C, then f(¢) can be written uniquely, except for order, as a

product
f) =c(t ~c)t —e). . Cas
where ¢, ¢, .- -, 65 € C.
(i) If F= R, then f(z) can be written uniquely, except for order, as a
product

f(r) = Cf!{:)fz(i) - 'fm(t):
where ¢ € R and the fi{f), . . ., f,,(f) are monic irreducible polyno-
mials of degree one or two.

2.4. REFERENCES AND NOTES

There are many excellent texts on abstract algebra. For an introductory
exposition of this subject refer, ¢.g., 10 Birkhoff and MacLane [2.1], Hanneken
12.2], Hu [2.3], Jacobson [2.4], and McCoy [2.6]. The books by Birkhoff
and MacLane and Jacobson are standard references. The texts by Hu and
McCoy are very readable. The excelient presentation by Hanneken is
concise, somewhat abstract, yet very readable. Polynomials over a field are
treated extensively in these references. Fora brief summary of the properties
of polynomials over a field, refer also to Lipschutz [2.5}.
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3.1. LINEAR SPACES

We begin by restating the definition of linear space.,

3.L1. Definition., Let X be
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called scalars, let the operation “-+-" defined on Y be called vector additio:e
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and let the mapping “+” be called scalar multiplication or multiplication of
vectors by scalars. Then for each x, y € X there is a unique element, x +— ¥
e X, called the sum of x and ¥, and for cach x € X and @ & Fthereisa
unique element, & - X & &x € X, called the multiple of x by «. We say that
the non-empty set X and the field F, along with the two mappings of vector
addition and scalar multiplication constitute a vector space or a linear space
if the following axioms are satistied:

i) x+y=y+xforeveryx,ye)(;
(i) x+(y+z)=(x+y)+zforeveryx,y,z65X;
(iii) there is a unique vector in X, called the zero vector or the null
vector or the origin, which is denoted by 0 and which has the prop-
erty that 0 + x = x forallx € X;
(v) alx + ) =ax + &y foralla € Fand forallx,y € X}
(v) (& -+ B)x = ax -+ fx for alle, f € Fand forall x € X
(v) (@f)x = a(Bx) for ali, B € Fandforallx € Xj;
(vii} Ox==0forallx e X; and )
(viii) 1xe=xforallx & X.

The reader may find it instructive to review the axioms of a field which
are summarized in Definition 2.1.63. In (v) the “-” on the left-hand side
denotes the operation of addition on F; the “--” on the right-hand side
denotes vector addition. Also, in (vi) ¢f & o+ B, where “+7 denotes the
operation of mulitplication on F. In (vii) the symbol 0 on the left-hand side is
a scalar; the same symbol on the right-hand side denotes a vector. The 1
on the left-hand side of (viii) is the identity element of F relative to “- ?.

To indicate the relationship between the set of vectors X and the underlying
field F, we sometimes refer to a vector space ¥ over field E. However, usually
we speak of a vector space X without making explicit reference to the field F
and to the operations of vector addition and scalar multiplication. If F is
the field of real numbers we call our vector spacea real vector space. Similarly,
if Fis the field of complex numbers, we speak of a complex vector space.
Throughout this chapter we will usually use lower case Latin letters {e.z.,
x, ¥, Z) to denote vectors (i.e., elements of X) and lower case Greek letters
(e.g., %, B, 7) to denote scalars (i.e., elements of F).

If we agree to denote the element (—1)x € X simply by —x, ie, (—Dx
5 —x, then we have x — x == lx+ (—Dx=(1—Dx=0x= 0. Thus,
if X is a vector space, then for every x € X there is a unigue vector, denoted
—x, such that x — x = 0. There are several other elementary properties of
vector spaces which are a direct consequence of the above axioms. Some of
these are summarized below. The reader will have no difficulties in verifying
these.
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'3.1.2. Theorem. Let X be a vector space. If x, ¥, 7 are elements in X and
if &, ff are any members of F, then the following hold:
(i) ifax=cayand ¢ =0 then x = y;
(ii}y Ifax = fxand x =0, then ¢ == §;
(i) if x+ y=x+ z, then y = z;
{iv) ab==0;
¥ alx —y)=o0x—ay;
(vi) {& — Bix=ax — fx;and
(vif} x -+ y = 0 implies that x = —y.

3.1.3. Exercise. Prove Theorem 3.1.2.

We now consider several important examples of vector spaces.

3.1.4. Example. Il,et X b.»e the set of all “arrows” in the “plane” emanating
froma referen«_:e point which we call the origin or the zero vector or the mull
vector, and which we denote by 0. Let F denote the set of real numbers, and

Iet vector addition and scalar multiplicati .
plication be defined
as shown in Figure A. ned in the usual way,

X

0
0 ay ¥ By

Vector X Vector x +y Vector y

Vector ay, O<a<?
Vector 8y, 8> 1
Vector vy, v<0

3.1.5. Figure A

_The readex: can readily verify that, for the space described above, all the
axioms of a linear space are satisfied, and hence X is a vector space.

. The purpose of the above example is to provide an intuitive idea of a
%mear space. We will utilize this space occasionally for purposes of motivation
3:1 our development, We must point out however that the terms “plane” and

arrows” were not formally defined, and thus the space X was not really

properly defined. In the examples which follow, we gi i
‘ A ve "
mulation of vector spaces. give & more precise for
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3.1.6. Example. Let X = R denote the set of real numbers, and let Falso
denote the set of real numbers. We define vector addition to be the usual
addition of real numbers and multiplcation of vectors x € R by scalars
& € Fto be multiplication of real numbers. It is a simple matter to show that
this space is a linear space. =

3.1.7. Example. Let X = F denote the set of all ordered n-tuples of
elements from field # Thus, if x € F%, then x = (&, &,, ..., ,), where
E e Fi=1,...,n With x,y € F" and &« € F, let vector addition and
scalar multiplication be defired as

x‘}"ym(51}623"lyfr;)_i_(ﬂ[’f}'?,:-“!qn)

A2 Fnnd ... 8 (3.1.8)
and

ox = (&, &y, o G & (@, 285, -, ) (3.1.9)

Tt should be noted that the symbol “+” on the right-hand side of Eq. (3.1.8)
denotes addition on the field F, and the symbol “~+” on the left-hand side of
Eq. (3.1.8) designates vector addition. (See Theorem 2.1.88.)

In the present case the nuil vector is defined as 0 = {0,0,...,0) and the
vector —x is defined by —x = —{(&,, &5, .., E) = (=&, —&u o, L0
Utilizing the properties of the field F, all axioms of Definition 3.1.1 are
readily verified, and F* is thus a vector space. We call this space the space
F7 of n-tuples of clements of F. = b

3.1.10. Example. In Example 3.1.7 let F == R, the fieid of real numbers.
Then X = R" denotes the set of all n-tuples of real numbers. We call the
vector space R” the n-dimensional real coordinate space. Similarly, in Example
3,1.7 let F = C, the field of complex numbers. Then X == C” designates the
set of all n-tuples of complex numbers. The linear space C" is called the n-
dimensional complex coordinate space. =

I the previous example we used the termy: dimension. At a later point in
the present chapter the concept of dimension will be defined precisely and
some of its properties will be examined in detail.

3.1.11. Example. Let X denote the set of all infinite sequences of real
numbers of the form

x=(§1, éz:--"fks"')s (3’1'12)

let F denote the field of real numbers, let vector addition be defined similarly
as in Eq. (3.1.8), and let scalar multiplication be defined similarly as in Eq.
(3.1.9). It is again an easy matter to show that this space is a vector space.
We point out that this space, which we denote by R”, is simply the collection
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of all infinite sequences; i.e., there i3 no requirement that any type of conver-
gence of the sequence be implied. m

3.1.13. Example. Let X == C*= denote the set of all infinite sequences of
complex numbers of the form (3.1.12), let F represent the field of complex
numbers, let vector addition be defined similarly as in Eq. (3.1.8), and let
scalar multiplication be defined similarly as in Eq. (3.1.9). Then C~ is a
vector space. ®

3.1.14. Example. Let X denote the set of all sequences of real numbers
having only a finite number of non-zero terms. Thus, if x € X, then

¥ (&L, 8,0,...0,.0) (3.1.15)

for some positive integer /. If we define vector addition similarly as in Eq.
(3.1.8), if we define scalar multiplication similarly as in Eq. (3.1.9), and if we
let F be the field of real numbers, then we can readily show that X is a real
vector space. We call this space the space of finitely non-zero sequences,

If X denotes the set of all sequences of complex numbers of the form
(3.1.15), if vector addition and scalar muitiplication are defined similarly as
in equations (3.1.8) and (3.1.9), respectively, then X is again a vector space
(a complex vector space). =

3.1.16. Example. Let X be the set of infinite sequences of real numbers
of the form (3.1.12), with the property that lim &, = 0. If Fis the field of real

numbers, if vector addition is defined similarly as in Eq. (3.1.8), and if scalar
multiplication is defined similarly as in Eq. (3.1.9), then X is a vector space.
This is so because the sum of two sequences which converge to zero also
converges to zero, and because the scalar multiple of a sequence converging
to zero also converges to zero, ®m

3.1.17. Example. Let X be the set.of infinite sequences of real numbers
of the form (3.1.12) which are bounded. If vector addition and scalar multi-
plication are again defined similarly as in (3.1.8) and (3.1.9), respectively,
and if F denotes the field of real numbers, then X is a vector space. This
space is called the space of bounded real sequences.

There also exists, of course, a complex counterpart to this space, the
space of bounded complex sequences. =

3.1.18. Example. Let X denote the set of infinite sequences of real numbers

of the form (3.1.12), with the property that i {&,] << oo, Let F be the field
=1

of real numbers, let vector addition be defined similarly as in {3.1.8), and let
scalar multiplication be defined similarly as in Eq. (3.1.9). Then X is a vector
space. o
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3.1.19. Example. Let X be the set of all real-valued continuous functions
defined on the interval [a, b}, Thus, if x € X, then x:[a, b] — R is a real,
continuous function defined for alla << t < b. We note that x == y if and only
if x(t) = y{#) for all ¢ € [q, b], and that the null vector is the function which
is zero for all ¢ € [, b]. Let F denote the field of real numbers, let « & F,
and let vector addition and scalar multiplication be defined pointwise by

(x -+ P)E) = x(t) + »(@) for all 1 € {a, §] (3.1.20)

and

{ox)(@) = ax{t) for all ¢ = [a, b} (3.1.21)

Then clearly x + ¥ € X whenever x, 3 € X, ax € X whenever ¢ € F and
x € X, and all the axioms of a vector space are satisfied. We call this vector
space the space of real-valued continuous functions o [a, b] and we denote it

by €[a, b]. -m

3.1.22. Example. Let X be the set of all real-valued functions defined on
the interval [e, b] such that

j'°§x(z)xdz< oo,

where integration is taken in the Riemann sense. Let F denote the field of
real numbers, and let vector addition and scalar multiplication be defined as
in equations (3.1.20) and (3.1.21), respectively. We can readily verify that X
is a vector space. & h

3.1.23. Example. Let X denote the set of all real-valued polynomials
defined on the interval [a, 5], let F be the field of real numbers, and let vector
addition and scalar multiplication be defined as in equations (3.1.20) and
(3.1.21), respectively. We note that the null vector is the function which is
zero for all ¢ € [a, b], and also, if x(f) is a polynomial, then so is —x(r}.
Furthermore, we observe that the sum of two polynomials is again a poly-
nomial, and that a scalar multiple of a polynomial is also a polynomial.
We can now readily verify that X is a linear space. ®
3.1.24. Example. Let X denote the set of real numbers between —a < 0
and +a > 0; ie., if x € X then x € [~g,d]. Let F be the field of real
aumbers. Let vector addition and scalar multiplication be as defined in
Example 3.1.6. Now, if & € Fis such that @ > 1, then g > a and ¢z & X
From this it follows that X is not a vector space. 2

Vector spaces such as those encountered in Examples 3.1.19, 3.1.22,
and 3.1.23 are called function spaces. In Chapter 6 we will consider some addi-

tional linear spaces.
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3.1.25, Exercise. Verify tﬁe assertions made in Examples 3.1.6, 3.1.7,
3.1.10, 3.1.11, 3.1.13, 3.1.14, 3.1.16, 3.1.17, 3.1.18, 3.1.19, 3.1.22, and 3.1.23.

3.2. LINEAR SUBSPACES AND DIRECT SUMS

, }\?gzﬁrst introduce the notion of linear subspace. {See also Definition

3:.2.1. De‘ﬁnition. A nom-empty subset ¥ of a vector space X is called a
imea?r manifold ora linear subspace in X'if (i) x + yis in ¥ whenever x and y
are in Y, and (i) ¢x is in ¥ whenever ¢ € Fandx € Y,

‘It is an easy matter to verify that a Hnear manifold ¥ satisfies all the
axioms of a vector space and may as such be regarded as a linear space itself.

55.2.2. Example. The set consisting of the null vector 0 is a linear subspace;
i.e., the set ¥ == {0} is a linear subspace. Also, the vector space Xis a Iinem,-
fsubspace of itself. If 2 linear subspace ¥ is not all of X, then we say that ¥
is a proper subspace of X. =

-3.2.3. Example. The set of all real-valued polynomials defined on the
mter.vett_l {a, bg (s;e Example 3.1.23) is a linear subspace of the vector space
consisting of all real-valued continuous functions defined on the i

la, B] (see Example 3.1.19). = © intervat

Concerning linear subspaces we now state and prove the following resuit.

3.2.4-. Them:em. Let Y and Z be linear subspaces of a vector space X.
The intersection of ¥ and Z, ¥ M Z, is also a linear subspace of X.

Proof. Since Y and Z are linear subspaces, it follows that 0 € Yand0 & Z,
and thus 0 € ¥ N Z. Hence, YN Z is non-empty. Now let &, § € F, Ie’;
Xy € ¥ and let x,y € Z. Then ax + fy = ¥ and also aax—i—ﬁyejrz
because ¥ and Z are both linear subspaces. Hence, ¢x - fy €« YN Z anci
¥ M Zis alinear subspace of X. =

We can extend the above theorem to a more general result.
3.2.5. Theorem. Let X be a vector space and let X, be a linear subspace

of X for every i = I, where 7 denotes some index set. Th isali
subspace of X. - dhen QI X, is a linear

3.2.6, Exercise. Prove Theorem 3.2.5.
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Now consider in the vector space of Example 3.1.4 the subsets ¥ and Z
consisting of two lines intersecting at the origin 0, as shown in Figure B.
Clearly, ¥ and Z are linear subspaces of the vector space X, On the other
hand, the union of ¥ and Z, ¥ U Z, obviously does not contain arbitrary
sums &y + fz, where ¢, § € Fand y € Y and z € Z. From this it follows
that if ¥ and Z are linear subspaces then, in general, the union YU Z is
not a linear subspace of X.

3.2.7. Figure B

3.2.8. Definition. Let X be a linear space, and let ¥ and Z be arbitrary
subsets of X. The sum of sets ¥ and 2, denoted by Y - Z, is the set of all
vectors in X which are of the form y -+ z, wherey & Yandz € Z.

The above concept is depicted pictorially in Figure C by utilizing the
vector space of Example 3.1.4. With the aid of our next result we can generate
various linear subspaces.

3.2.9.  Figure C. Sum of two Subsets,
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3.2.10. Theorem. Let ¥ and Z be linear subspaces of a vector space X,
Then their sum, ¥ + Z, is also a linear subspace of X.

3.2.11. Exercise. Prove Theorem 3.2,10.

Now let ¥ and Z be linear subspaces of a vector space X. If ¥ N Z = {0},
we say that the spaces Y and Z are disjoint. We emphasize that this termi-
nology is not consistent with that used in connection with sets. We now
have:

3.2.12. Theorem. Let ¥ and Z be linear subspaces of a vector space X.
Then for every x € ¥ -+ Z there exist unique ¢lements y € Yandz € Z
such that x = y + zifand only if ¥ n Z = {0}

Proof. Let x & Y+ Z be such that x =y, 4z, = », + z,, where y,,
y, € Yand wherez,,z, € Z. Thenclearly y, — y, =z, — z;. Now y, — »,
e Yandz, — z; € 2, and since by assumption ¥ N Z = {0}, it follows that
¥~y =0andz; —z,=0,y, =y, and z, == z,. Thus, everyx € Y+ 2
has & unique representation x = y + z, where y € Y and z € Z, provided
that ¥ m Z = {0}

Conversely, let us assume that forecach x =y +ze Y+ Ztheye ¥
and the z € Z are uniquely determined. Let us further assume that the linear
subspaces Y and Z are not disjoint. Then there exists a non-zero vector
ve YNnZ Inthiscasswecanwrite x =y -+ z=ypt+zt+aov—ov=(y
“ g} 4 (z — aw) for all ¢ < F. But this implies that y and z are not unique,
which is a contradiction to our hypothesis. Hence, the spaces ¥ and Z must
be disjoint, w

Theorem 3.2.10 is readily extended to any number of linear subspaces
of X_ Specifically, if X, ..., X, are linear subspaces of X, then X, 4+ ...
-+ X, is also a linear subspace of X This enables us to introduce the fol-
lowing:

3.2.13., Definition. Let X,,..., X, be lincar subspaces of the vector
space X. The sum X, + ...+ X, is said to be a direct sum if for each
xe X+ ...+ X, thereisauniquesetof x, € X, i=1,...,r such that
x=x;+...+ x.We denote the direct sumof X, ..., X, by X, P...

@ X..

There is a connection between the Cartesian product of two vector spaces
and their direct sum. Let ¥and Z be two arbitrary linear spaces over the same
field Fandlet V = ¥ x Z.Thus,ifv € V, thenvis the ordered pair

v=(31),
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where y € Yand z @ Z. Now let us define vector addition as
(71, 20) + (72, 22) = (01 + Y2, 210 + 22) (3.2.149
and scalar multiplication as
&y, z) = (&y, 42), (3.2.15)

where (¥y, 2.), (2, 22) € ¥V = ¥ X Z and where o & F. Noting that for each
vector (¥, 2z} € V¥ there is a vector —(y, 2) = (—y, —z) € V¥, and observing
that (0, 0) = (», 2} — (, 2) for all elements in V, it is an easy matter to show
that the space ¥ == ¥ x Z is a linear space. We note that ¥ is not a linear
subspace of ¥, because, in fact, it is not cven a subset of V. However, if we
let

Y={0:ye ¥}
and
Z2'={{0, )z Z},

Then ¥’ and Z” are linear subspaces of V" and V' = Y" @ 2Z'. By abuse of
notation, we frequently express this simply as V= Y @D Z.

Once more, making use of Example 3.1.4, let ¥ and Z denote two lines
intersecting at the origin 0, as shown in Figure D. The direct sum of linear
subspaces ¥ and Z is in this case the “entire plane.”

fy, 2y

3.2.16. FigweD

In order that a subset be a linear subspace of a vector space, it is necessary
that this subset contain the null vector. Thus, in Figure D, the lines Yand Z
passing through the origin O are linear subspaces of the plane (see Example
3.1.4). In many applications this requirement is too restrictive and a general-
ization is called for, We have:

3.2.17. Definition. Let Y be a linear subspace of a vector space X, and let
x be a fixed vector in X. We call the translation
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Ze=x4 Ya{ze Xiz=x-+yye ¥}
a linear variety or a flat or an affine linear subspace of X,

In Figure E, an example of a linear variety is given for the vector space of
Example 3.1.4.

3.2.18. Figure E

3.3. LINEAR INDEPENDENCE, BASES,
" AND DIMENSION

Throughout the remainder of this and in the following chapter we use the
Sfollowing notation: {0, ..., %}, & € F, denotes an indexed set of scalars,
and {x,...,x,}, % € X, denotes an indexed set of vectors.

Before introducing the notions of linear dependence and independence
of a set of vectors in a linear space X, we first consider the following.

3.3.1. Definition. ILet Y be a set in a linear space X (¥ may be a finite set
or an infinite set). We say that a vector x £ X is a finite linear combination
of vectors in ¥ if there is a finite set of elements {y,, »,,..., ¥} in Yand a
finite set of scalars {&,, &;, . . ., @,} in F such that

X=0F + Gy, + ...+ &P (3.3.2)

In Eq. (3.3.2) vector addition has been extended in an obvious way from
the case of two vectors to the case of n vectors. In later chapters we will
consider linear combinations which are not necessarily finite. The represen-
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tation of x in Eq. (3.3.2) is, of course, not necessarily unique. Thus, in the
case of Example 3.1.10,if X = R*and if x = (1, 1), then x can be represented

as

X =0y -+ G2 = 1(1,0) + 10, I)
or as

x= iz, + B2y = 2(‘%: 03y 4+ 3(0, ‘:1{):
etc. This situation is depicted in Figure F.

y2 =0, 1e x =11, 1) =1(1, 00+ 10, 1} = 2{%, 0} + 3{0, }) =etc.

2y = {0, %) L4

v, = (1, 0}
3,3.3. Figure F

3.3.4. Theorem. Let ¥ be a nom-empty subset of a linear space X. Let
V(¥ be the set of all finite linear combinations of the vectors from Y; ie.,
y @ P(Y)if and only if there is some set of scalars {ay, ..., &,} and some
finite subset {y,, ..., ¥n} of ¥ such that

Y @Yyt GV + Vi
where m may be any positive integer. Then ¥(¥) is a linear subspace of X.

3.3.5. Exercise. Prove Theorem 3.3.4.

Our previous result motivates the following concepts.

3.3.6.'.:-'.'Deﬁnition. We say the linear space V(Y } in Theorsm 3.3.4 is the
Iinear subspace generated by the set 7.

3.3.7." Definition. Let Z be a linear subspace of a vector space X, If there
exists a set of vectors ¥ < X such that the linear space P(Y) generated by
Y is Z, then we say Y spans Z.

If, in particular, the space of Example 3.1.4 is considered and if ¥ and W
are linear subspaces of X as depicted in Figure G, then the set ¥ = {e;}
spans W, the set Z = {e,] spans ¥, and the set M = {e,, e,} spans the vector
space X. The set ¥ = {,, e;, €} also spans the vector space X.
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3.3.8. Figure G. V and W are Lines Intersecting at Origin O.

3.3.9. Exercise. Show that V(Y is the smallest linear subspace of a vector
space X containing the subset ¥ of X. Specifically, show that if Z is a linear
subspace of X and if Z contains ¥, then Z also contains ¥{¥).

And now the important notion of linear dependence.

3.3.10. Definition. Let {x,,x,,...,x,} be a finite non-empty set in a
linear space X. If there exist scalars «,, ..., &, € F, not all zero, such that

EXy) e EpXy =0 (3.3.11)
then the set {x,, x,,..., x,} is said to be lineazxly dependent, If a set is not
linearly dependent, then it is said to be linearly independent. In this case the
relation (3.3.11) implies that &, = g, = .., == g, == 0. An infinite set of

vectors Y in X is said to be linearly independent if every finite subset of ¥
is linearly independent.

Note that the null vector cannot be contained in a set which is linearly
independent. Also, if a set of vectors contains a linearly dependent subset,
then the whole set is linearly dependent.

If X denotes the space of Example 3.1.4, the set of vectors {¥, z} in Figure
H is linearly independent, while the set of vectors {u, v} is linearly dependent.

¥

0

3.3.12, Figure H. Linearly Independent and Linearfy Dependent Vec-
tors,

3.3.13. Exercise. Let X = €[q, ], the set of all real-valued continuous
functions on [, b), where b > a. As we saw in Example 3.1.19, this set forms
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a vector space. Let nn be a fixed positive integer, and let us define x; € X for
i=0,1,2,...,n, as follows. Forall ¢ € [a, b), let

x(t) =1

and )
xt=1¢, i=1...,n

Let ¥ = {xg, X1,...,X,}. Then ¥(Y) is the set of all polynomials on [a, &]
of degree less than or equal to n.

(a) Show that Y is a linearly independent set in X.
() Let X,=1{x},i=01,....n ie, each X, is a singleton subset
of X. Show that
V()= V(X)) @ V(X)D ... P V(X))
(¢) Letzo{t)= 1forallt e [a, b] and let
zty=1+t+...+¢*

forall t € {o, ] and k= 1,..., n. Show that Z = {Zoy 210+ v+ » Za}
is a linearly independent set in V().

3.3.14. Theorem. Let {xy, x,;,...,X.} be a lineatly independent set in
a vector space X, If f: X = {}_’; Bx, thena, = B, foralli=1,2,...,m.
{==} =

Proof. If i o X, = i f.x, then ‘Z; (e, — B)x, == 0. Since the set {x;, ...,
i=1 {=1 =

x,} is linearly independent, we have (& — By=0foralli=1...,m
Therefore o, = f, foralli. m

The next result provides us with an alternate way of defining linear
dependence.

3.3.15. Theorem. A set of vectors [x;,x;, ..., %,} in a lincar space X

is linearly dependent if and only if for some index 7, 1 = i << m, we can find
scalars €y, . .., %1, Begps - - - » % sSuch that

Xy == Gy Xy b A G Xy R Gy Xy b Ao X, {3.3.16)
Proof.. Assume that Eq. (3.3.16) is satisfied. Then
Goxy 4o Oy Xy DX B X + Xy = 0.
Thus, & == —1 3= 0 is a non-trivial choice of coefficient for which Eq.
(3.3.11) holds, and therefore the set {X1s X125 - - + s X} i8 linearly dependent.

Conversely, assume that the set {x;, X5, ..., x,} is linearly dependent.
Then there exist coefficients &, . . . , &, which are not all zero, such that

Oy + Ggdy F oo OnXn = 0. (3.317)
Suppose that index I is chosen such that &, 5= 0. Rearranging Eq. (3.3.17) to
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— X = Xy b O Xy b G Ry e T Gk, (3.3.18)
and multiplying both sides of Eq. (3.3.18) by —1/«,, we obtain
Xpe= Boxy b Baxy o F Boaxiy b B F oo - B

where f, = —oft, k= 1,...,i— 1, i+ 1,...,m This concludes our
proof. ®

The proof of the next result is left as an exercise.

3.3.19. Theorem. A finite non-empty set ¥ in a linear space X is linearly
indenpendent if and only if for each y & V(Y), y »& 0, there is 2 unique finite
subset of Y, say {x,, x, ..., x,,} and a unique set of scalars {¢;, &, . .., &},
such that

Y=0x; +...+ &,x,.
3.3.20, Exercise. Prove Theorem 3.3.19.

3.3.21. Exercise. Let Y be a finite set in a linear space X, Show that ¥
is linearly independent if and only if there is no proper subset Z of ¥ such
that ¥{Z) = V(7).

A concept which is of utmost importance in the study of vector spaces is
that of basis of a linear space.

3.3.22. Definition. A set ¥ in a linear space X is called 2 Hamel basis,
or simply a basis, for X' if

{) Yis linearly independent; and

(ii) the span of Y is the linear space X itself; ie., (¥} = X.

As an immediate consequence of this definition we have:

3.3.23. Theorem. Let X be a linear space, and let ¥ be a linearly indepen-
dent set in X. Then Y is a basis for ¥(¥).

3.3.24, Exercise. Prove Theorem 3.3.23.

In order to introduce the notion of dimension of a vector space we show
that if a linear space X is generated by a finite number of linearly independent
elements, then this number of elements must be unique. We first prove the
following result.

3.3.25. Theorem. Let {x;,x,,...,x} be a basis for a linear space X.
Then for each vector x & X there exist unique scalars #,, . . . , %, such that

X=X b X,




90 Chapter 3 | Vector Spaces and Linear Transformations

Proof. Since xy, ... %, SPAD X, every vector x € X can be expressed as
4 linear combination of them; i.e.,

xmm1x1+m2x2+---+“nxn

for some choice of scalars %g,... 5 &n We now must show that these scalars
are unique. To this end, suppose that

X 5= 0y Xy 4 GpXp k.. T Sy

and
x = Byxy + BaXs + .. + B,
Then
x4 {(—x) = (%) + GXy A+ X (—Bx: — Bax,

= Bax)
= (0, — Bo)x; -+ (& ~ Badxy + .. (o, ~ Bo)x, = 0.
Since the vectors Xx;, Xz, ..., X, form a pasis for X, it follows that they

are linearly independent, and therefore we must have (& — f) =0 for
i=1,...,n From this it follows that &, = Boty == faye st = 5. =

We alsc have:

3.3.26. Theorem. Let {xy, x5 ...,%}bea basis for vector space X, and
let {1, . - - » ¥} be any linearly independent set of vectors. Then m < 7.

Proof. We need to consider only the case m = n and prove that then we
actually have m = n. Consider the set of vectors (¥, X1, ..+ » X,}. Since the
Vectors Xy, . . ., X, Span X, ¥, <an be expressed as a linear combination of
them. Thus, the set {¥;, X1, ..., ¥} is not linearly independent. Therefore,
there exist scalars 81, @y, - - - , G, Dot all zero, such that

By b ogxy e X, = 0. (3.3.27)
If all the «, are zero, then f§; = Oand By, = 0. Thus, we can write

ﬁ;YI+0'YZ+---+Q'3’m=0-

But this contradicts the hypothesis of the theorem and can’t happen because
the P4, .« - , ¥ are linearly independent. Therefore, at least one of the o, 5= 0.
Renumbering all the x,, if necessary, we ¢an assume that &, 7= 0. Solving for
x, we now obtain

— — =,
%, = (_Gng)y; + (‘m‘f)"* FIS (-m&—i)xl (3.3.28)
Now we show that the set {3, %y, ... , X1} is also a basis for X. Since
(X1se. a2 Xji52 basis for X, we have &, &5, ..-,8, € F such that

x=ej1xl +"‘ +§ﬁx)l‘
Substituting (3.3.28) into the above expression we note that
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xm= Eoxy gy ol 6,,[(-'%%)3;; I (_:"—5)::,,_1]

"

=Py 4+ PxXe+o.- + Vot Xt

where » and 9, are defined in an obvious way. In any case, every x € X can
be expressed as a linear combination of the set of vectors {71, X5+ .+ » Xn- b
and thus this set must span X. To show that this set is also linearly indepen-
dent, let us assume that there are scalars 4, A, . . « ; &, Such that

Ay, FAxy oo A X = 0,
and assume that A = 0. Then

= (r{u)xl I (“ﬁim)x"_] +0-x, (3329

In view of Eq. (3.3.27) we have, since 8, # 0, the relation

- —&

yi= (—ﬁ:l)xl FI (:Ef—l)x‘ +( ﬁln)x,,. (3.3.30)

Now the term (—&,/8,)x, in Eq. (3.3.30) is not zero, because we solved for
x, in Eq. (3.3.28); yet the coefficient multiplying x, in Eq. (3.3.29) is zero.
Since {x;,..., %} isa basis, we have arrived at a contradiction, in view of
Theotem 3.3.25. Therefore, we must have A = 0. Thus, we have
Axy 4 oeeF ApiXey + 0%, =0

and since {Xy, ..., X,} is a linearly independent sct it follows that 4, == 0,
..., A,y = 0. Therefore, the set {P1s Xgser-s Xuop) 08 indeed a basis for X.

By a similar argument as the preceding one we can show that the set
{25 Y1s Xgs e v s Xpoa} 15 2 basis for X, that the set [y, Y2 ¥, X1y o003 Xou
is a basis for X, etc. Nowif m>n, then we would not utilize y,,, in our
process. Since {¥a. .. 5} is a basis by the preceding argument, there exist
coefficients #,, . . - , #; such that

Yas1 ﬂqn.Yn%_ LR mi_qul‘

But by Theorem 3.3.15 this means the y,i==1,...,n+ 1 are linearly
dependent, a contradiction to the hypothesis of our theorem. From this it
now follows that if m = n, then we must have m = n. This concludes the
proof of the theorem. =

As a direct consequence of Theorem 3.3.26 we have:

3.3.31. Theorem. Ifalinearspace Xhasa basis contajning a finite number
of vectors », then any other basis for X consists of exactly » elements.

Proof. Let {x,,...,x,}bea basis for X, and let also {y;,..., ¥n} DE 2
basis for X, Then in view of Theorem 3.3.26 we have m << n. Interchanging
the role of the x; and 7, we also have < m. Hence, m=n. R
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Our preceding result enables us to make the following definition.

3,332, Definition. If a linear space X has a basis consisting of a finite
number of vectors, say {x,, ..., x,}, then X is said to be a finite-dimensional
vector space and the dimension of X is n, abbreviated dim X = z. In this
case we speak of an n-dimensional vector space. If X is not a finite-dimensional
vector space, it is said to be an infinite-dimensional vector space.

We will agree that the linear space consisting of the null vector is finite
dimensional, and we will say that the dimension of this space is zero.

Our next result provides us with an alternate characterization of (finite)
dimension of a linear space.

3.3.33. Theorem. Let X be a vector space which contains z linearly inde-
pendent vectors. If every set of n + 1 vectors in X is linearly dependent,
then X is finite dimensional and dim X = n.

Proof. Let{x,...,x,} be a linearly independent set in X, and let x € X
Then there exists a set of scalars {o4, . . ., &,.} not all zero, such that
Epxy .. 0x, O x =0,

Now ¢, , 7 0, otherwise we would contradict the fact that x4, ..., x, are
linearly independent. Hence,

x=—-(u‘ )xlw-...—-(“" )x,,
L Pona1 -

and x ¢ V({x;,...,x.D; i.e, [x;,....x,} is a basis for X. Therefore, X
is n-dimensional. =

From our preceding result follows:

3.3.34. Corollary, Let X be a vector space. If for given nevery setof n + 1
vectors in X is linearly dependent, then X is finite dimensional and dim X
=

3.3.35. Exercise. Prove Corollary 3.3.34.
We are now in a position to speak of coordinates of a Vector, We have:

3.3.36. Definition. Let X be a finite-dimensional vector space, and let
{x4, ..., %, be a basis for X. Let x € X be represented by

x=&x, ...+ Ex
The unique sealars £, &;, . . ., &, are called the coordinates of x with respect
to the basls {x,, x,, . .., x,}.

1t is possible to. prove results similar to Theorems 3.3.26 and 3.3.31 for
infinite-dimensional linear spaces. Since we will not make further use of
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these results in this book, their proofs will be omitted. In the following
theorerns, X is an arbitrary vector space (i.e., finite dimensional or infinite
dimensional).

3.3.37. Theorem. If ¥ is a linearly independent set in a linear space X,
then there exists a Hamel basis Z for X such that ¥ < Z.

3.3.38. Theorem. If ¥ and Z are Hamel bases for a linear space X, then
Y and Z have the same cardinal number.

The notion of Hamel basis is not the only concept of basis with which we
will deal. Such other coneepts (to be specified later) reduce to Hamel basis
on finite-dimensional vector spaces but differ significantly on infinite-dimen~
sional spaces. We will find that on infinite-dimensional spaces the concept
of Hamel basis is not very useful. However, in the case of finite-dimensional
spaces the concept of Hamel basis is most crucial.

In view of the results presented thus far, the reader can readily prove the
foliowing facts.

3.3.39. Theorem. Let X be a finite-dimensional linear space with dim X
=n,
() No linearly independent set in X contains more than r vectors.

(if) A linearly independent set in X is a basis if and only if it contains
exactly n vectors.

(iii) Every spanning or generating set for X contains a basis for X.
{iv) Every set of vectors which spans X confains at least n vectors.

(v} FEvery linearly independent set of vectors in X is contained in a basis
for X.

(vi) If ¥ is a linear subspace of X, then Y is finite dimensional and
dim ¥ < n. .

(vil) If Yis a linear subspace of X and if dim X = dim ¥, then ¥ == X.
3.3.40. Ixercise. Prove Theorem 3.3.35.
From Theorem 3.3.39 follows directly our next result.

3.3.41. Theorem. Let X be a finite-dimensional linear space of dimension
n, and let ¥ be a collection of vectors in X. Then any two of the three con~
ditions lsted below imply the third condition:
(i) the vectors in Y are [inearly independent;
(ify the vectors in Y span X; and
(iii) the number of vectors in Y is .
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3.3.42. FExercise. Prove Theorem 3.3.41.

Another way of restating Theorem 3.3.41 is as follows:

{a) the dimension of a finite-dimensional linear space X is equal to the
smallest number of vectors that can be used to span X; and

(b} the dimension of a finite-dimensional linear space X is the largest
number of vectors that can be linearly independent in X.

For the direct sum of two linear subspaces we have the following result,

3.3.43, Theorem. Let X be a finite-dimensional vector space. If there
exist linear subspaces ¥ and Z of X such that X = Y@ Z, then dim (X)
= dim {¥) + dim {Z).

Proof. Since X is finite dimensional it follows from part (vi) of Theorem
3.3.39 that ¥ and Z are finite-dimensional linear spaces. Thus, there exists
a basis, say (¥, ..., .} for ¥, and a basis, say {z;,..., Z,}, for Z. Let
W=1{V1s.rnsVp Z1s o+ s T} We must show that W is alinearly independent
set in X and that V(W) = X, Now suppose that

0= MZI &y -+ ;::1 Bz

Since the representation for 0 € X must be unique in terms of its components
in ¥ and Z, we must bave

g wy, =0 b
and
g Biz, = 0.
But this implies that o, =8, =... =8, = fi=F=...= B, =0

Thus, W is a linearly independent set in X. Since X is the direct sum of ¥
and Z, it is clear that W generates X. Thus, dim X = m -+ ». This completes
the proof of the theorem. =

We conclude the present section with the following results.

3,3,44. Theorem. Let X be an n-dimensional vector space, and let {y,,
., ¥} be a linearly independent set of vectors in X, where m < &. Then it

is possible to form a basis for X consisting of n vectors x,, .. ., X, where

x=yfori=1,...,m.

Proof. Let{e,,...,e,} be a basis for X. Let §, be the set of vectors {¥,,
vy ¥ €1, ... 8}, where {y,,...,p,} is a linearly independent set of

vectors in X and where m < n. We note that §; spans X and is linearly
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dependent, since it contains more than n vectors. Now let

!gs %y, + g}l B, =0.

Then there must be some f§, % 0, otherwise the linear independence of
{¥:s -+ - » ¥u} would be contradicted. But this means that ¢, is a linear combi-
nation of the set of vectors So = {Fy. oo s Faw €rs e v s €1m1s €pugs -+ o5 €15
ie., 8, is the set 5, with ¢, eliminated. Clearly, S, still spans X. Now either
S, contains n vectors or else it is a linearly dependent set. If it contains n
vectors, then by Theorem 3.3.41 these vectors must be linearly independent
in which case S, is a basis for X. Wethen let x, = ¢, and the theorem is proved.
Or the other hand, if §, contains more than n vectors, then we continue the
above procedure to eliminate vectors from the remaining s until exactly
rn — m of them are left. Letting ¢,,, ..., ¢, __ be the remaining vectors and
letting x4, ==¢,,...,x,=¢,_, we have completed the proof of the
theorem. =

3.3.45, Corollary. Let X be an n-dimensional vector space, and let ¥ be
an m-dimensional subspace of X Then there exists a subspace Z of X of
dimension {n — m) such that ¥ = ¥ @ Z.

3.3.46. Exercise, Prove Corollary 3.3.45.

Referring to Figure 3.3.8, it is easy to see that the subspace Z in Corollary
3.3.45 need not be unique.

3.4. LINEAR TRANSFORMATIONS

Among the most important notions which we will encounter are special
types of mappings on vector spaces, called linear transformations.

3.4.1. Definition. A mapping T of a linear space X into a linear space ¥,
where X and Y are vector spaces over the same field F, is called a linear
transformation or linear operator provided that

@ Tx+p=TE)-+To)forallx,y € X;and

(i) T(ex)=olx)forallx € Xandforalle c F.

A transformation which is not linear is called a nen-linear transformation,

We will find it convenient to write T & L{X, Y) to indicate that T is

a linear transformation from a linear space X into a linear space ¥ (i.e.,
T




