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1. Algebraic Structures

Definition 1 A Group is a pair {X; ·} such that

1. “·” is closed on X.

2. “·” is associative on X.

3. There is an identity e ∈ X (w.r.t. “·”).
4. Every element a ∈ X has an inverse a−1 (w.r.t. “·”).

Definition 2 A Ring is a triple {X; +, ·} such that

1. {X; +} is an Abelian group.

2. {X; ·} is a semigroup (lacks identity and inverses).

3. “·” distributes over “+”.
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Algebraic Structures

Definition 3 A Field is a triple {X; +, ·} such that

1. {X; +, ·} is a ring.

2. {X#; ·} is an Abelian group where X# = X − {0}.

Definition 4 A Vector Space is an Abelian group {X; +}
over a field {F ; +, ·} with a scalar product F ×X → X. For
α, β ∈ F and x, y ∈ X,

1. α(x+ y) = αx+ αy

2. (α+ β)x = αx+ βx

3. (αβ)x = α(βx)

4. 1x = x
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Field

Definition 3 (Field) Let F 6= ∅ be a set with addition

“+”:X × X → X and multiplication “·”:F × X → X. Then {F ; +, ·}
with the operations forms a field if the following axioms are satisfied:

1. x + y = y + x, x · y = y · x commutative laws

2. x + (y + z) = (x + y) + z, x · (y · z) = (x · y) · z associative laws

3. ∃ unique element 0 satisfying 0 + x = x additive identity

4. To each x, ∃ a unique −x so that x + (−x) = 0 additive inverse

5. There is a unique element 1 satisfying 1 · x = x mult. identity

6. To each x 6= 0, ∃ a unique x−1 so that x · x−1 = 1 mult. inverse

7. x · (y + z) = x · y + x · z “·” over “+” distributive law
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Examples of Fields

1. Q, R, and C are fields.

2. Z is not a field. (Why?)

3. Let p be a prime. Then Zp is a p-element field.

4. Q
[√

2
]
={a+ b

√
2 | a, b ∈ Q} is a field.

5. Z
[√

2
]
={a+ b

√
2 | a, b ∈ Z} is not a field. (Why?)

6. Q
[

3
√

3
]
={a+ b 3

√
3 + c

3
√

32 | a, b, c ∈ Q} is a field.

7. Zp[i], p is prime, is a field (with p2 elements).
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Vector Space

Definition 4 (Vector Space) Let X 6= ∅ be a set (vectors) and F be a
field (scalars) with vector addition “+”:X × X → X and scalar
multiplication “·”:F × X → X . Then X and F with the operations forms a
vector space (or linear space), “X is a vector space over F ,” if the
following axioms are satisfied:

1. x + y = y + x commutative law

2. x + (y + z) = (x + y) + z associative law

3. There is a unique vector 0 satisfying 0 + x = x ‘zero vector,’ identity

4. α(x + y) = αx + αy scalar “·” over vector “+” distributive law

5. (α + β)x = αx + βx scalar “+” over scalar “·” distributive law

6. (αβ)x = α(βx) scalar homogeneity

7. 0x = 0 scalar-vector additive identity relation (implied by 5.)

8. 1x = x scalar-vector multiplicative identity relation

Intro to Linear Algebra MAT 5230 – p. 10/130



Examples of Vector Spaces

1. Let n ∈ Z+. Then Qn, Rn, and Cn are vector spaces.

2. Let n ∈ Z+. Then Pn, the polynomials (real or complex) of

degree less than or equal to n, forms a vector space.

3. Z2 × Z2 × Z2 is a vector space.

4. Let F be a field and n ∈ Z+. Then Fn is a vector space.

5. Let Mm×n be the m × n matrices with entries in a field F with

componentwise addition and scalar multiplication.

6. Let K ⊆ R be a closed interval. Then C(K), the continuous

real-valued functions on K form a vector space.

7. Let O ⊆ R be an open interval. Then C1(O), the continuously

differentiable real-valued functions on O, form a vector space.
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Homomorphisms

Definition 5 (Group Homomorphism) Let {X; +X} and
{Y ; +Y } be two groups with ρ : X → Y . Then ρ is a
homomorpism iff

ρ(x1 +X x2) = ρ(x1) +Y ρ(x2)

Definition 6 (Ring Homomorphism) Let {X; +X , ·X} and
{Y ; +Y , ·Y } be two rings with ρ : X → Y . Then ρ is a
homomorpism iff

ρ(x1 +X x2) = ρ(x1) +Y ρ(x2)

ρ(x1 ·X x2) = ρ(x1) ·Y ρ(x2)
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Vector Space Homomorphism

Definition 7 (Linear Transformation) Let X and Y be
vector spaces over the same field F . Then the relation
ρ : X → Y is a linear transformation if and only if for every
α ∈ F and x1, x2 ∈ X, it follows that:

ρ(x1 +X x2) = ρ(x1) +Y ρ(x2) (1)

ρ(α · x1) = α · ρ(x1) (2)
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Linear Transformation

[x1, x2]
+−→ x1 + x2

ρ
y ρ

y

[ρ(x1), ρ(x2)]
+−→ ρ(x1 + x2) =

ρ(x1) + ρ(x2)

(1)

[α, x1]
·−→ α · x1

ρ
y ρ

y

[α, ρ(x1)]
·−→ ρ(α · x1) =

α · ρ(x1)

(2)

(Go to TOC)
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2. Properties of Finite Fields

Theorem 1 Zp is a field if and only if p is prime.

Theorem 2 Let p be a prime and n ∈ Z+. Then there exists
a finite field F with pn elements.

Theorem 3 For any prime p and n ∈ Z+, there is
(essentially) only one field with pn elements.
(The splitting field of xpn − x over the field Zp.)
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4. Properties of Vector Spaces

Theorem 4 Let X be a vector space over the field F . Let
x, y, z ∈ X and α, β ∈ F . Then

1. if αx = αy and α 6= 0, then x = y;

2. if αx = βx and x 6= 0, then α = β;

3. if x+ y = x+ z, then y = z;

4. α · 0 = 0;

5. α(x− y) = αx− αy where −y ∆
= (−1) · y;

6. (α− β)x = αx− βx;

7. x+ y = 0 implies that x = −y.
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More Examples of Vector Spaces

Sequence Vector Spaces

R∞ and C∞

Finitely non-zero real (or complex) sequences

Null real (or complex) sequences

Bounded real (or complex) sequences

Convergent real (or complex) sequences

Function Vector Spaces

P = {polynomials with real (or complex) coefficients}
C([a, b]) = {f | f : [a, b] → R is continuous} over R

L1([a, b]) = {f |
∫ b

a
|f(t)| dt < ∞} over R

(Go to TOC)
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5. Homomorphisms

Definition 5 (Group Homomorphism) Let {X; +X} and
{Y ; +Y } be two groups with ρ : X → Y . Then ρ is a
homomorpism iff

ρ(x1 +X x2) = ρ(x1) +Y ρ(x2)

Definition 6 (Ring Homomorphism) Let {X; +X , ·X} and
{Y ; +Y , ·Y } be two rings with ρ : X → Y . Then ρ is a
homomorpism iff

ρ(x1 +X x2) = ρ(x1) +Y ρ(x2)

ρ(x1 ·X x2) = ρ(x1) ·Y ρ(x2)
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Vector Space Homomorphism

Definition 7 (Linear Transformation) Let X and Y be
vector spaces over the same field F . Then the relation
ρ : X → Y is a linear transformation if and only if for every
α ∈ F and x1, x2 ∈ X, it follows that:

ρ(x1 +X x2) = ρ(x1) +Y ρ(x2) (3)

ρ(α · x1) = α · ρ(x1) (4)

Examples

1. Set φ : R2 → R4 by φ(x, y) = (x, 0, 0, y).

2. Set ψ : R2 → C by ψ(x, y) = x+ i y.
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Linear Transformation

[x1, x2]
+−→ x1 + x2

ρ
y ρ

y

[ρ(x1), ρ(x2)]
+−→ ρ(x1 + x2) =

ρ(x1) + ρ(x2)

(1)

[α, x1]
·−→ α · x1

ρ
y ρ

y

[α, ρ(x1)]
·−→ ρ(α · x1) =

α · ρ(x1)

(2)

(Go to TOC)
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6. Subspace of a Vector Space

Definition 8 (Subspace) Let X be a vector space over F and let

∅ 6= V ⊆ X. Then V is a subspace of X iff

1. ∀u, v ∈ V , we have u + v ∈ V (closed under addition)

2. ∀α ∈ F , ∀u ∈ V , we have αu ∈ V (closed under scalar mult.)

Theorem 5 A subspace of a vector space is itself a vector space.

Proof. Let V be a subspace of X. V is closed under vector addition

and scalar multiplication by definition. All remaining vector space

properties — with the exception of 0 ∈ V — are inherited from X.

Let v ∈ V (because V 6= ∅). Since 0 ∈ F , then 0v = 0 ∈ V . Thus V

is a vector space. �

Note. Every vector space has at least 2 subspaces. What are they?
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Examples of Subspaces

{0} and X are always subspaces of X

R2 is a subspacea of R3, C2 is a subspace of C3.

For m < n, we have that Rm is a subspace of Rn

For m < n, we have that Pm is a subspace of Pn

Is
V1 = {(x, 1) |x, y ∈ R} a subspace of R2?

V2 = {(x, y, x + y, 0) |x, y ∈ R} a subspace of R4?

V3 = {(x, y, x+ y+2, 0) |x, y ∈ R} a subspace of R4?

a Thinking of R2 as a subset such as{(x, y, 0) |x, y ∈ R}, &c., of R3.

Formally,R2 is isomorphic to a subspace ofR3.

(Go to TOC)
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Is This a Subspace?
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Is This a Subspace?

(Go to TOC)
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7. Operations with Subspaces

Theorem 6 Let X be a vector space over F and let V1 and
V2 be subspaces of X. Then V = V1 ∩ V2 is a subspace.

Pf. (Exercise.)

Theorem 7 Let X be a vector space over F and let Xi for
i ∈ I be subspaces of X where I is some index set. Then
V =

⋂

i∈I

Xi is a subspace.

Pf. (Easy closure calculations.)

NB: Unions (usually) or complements of subspaces do not
form new subspaces.
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Direct Sum

Definition 9 (Direct Sum) Let X1, X2, . . . , Xr be
subspaces of X. The set X1 +X2 + · · ·+Xr forms the direct
sum X1 ⊕X2 ⊕ · · · ⊕Xr iff for every x in the sum, there is a

unique set of xi ∈ Xi such that x =
r∑

i=1

xi.

Theorem 8 X1 +X2 = X1 ⊕X2 if and only if X1 ∩X2 = {0}.

Pf. Based on: Let 0 6= v ∈ X1 ∩X2. Then v = v + 0 = 0 + v is
two different ways to write v.

Note . X1 +X2 is a subspace; X1 ⊕X2 is a subspace that
‘looks like’ a direct product.
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Subspaces ofR2 and R3

Example 1 Set X = R2. Let X1 be given by the line y = x
and X2 by the line y = −x. Then

{0} = X1 ∩X2 ⊆ X1 ∪X2 ⊆ X1 +X2 = X1 ⊕X2 = R2

subsp ¬subsp subsp

Example 2 Set X = R3. The subspaces of R3 are:

{0}
A line L through the origin.

The direct sum of two distinct lines through the origin
L1 ⊕ L2 yields a plane.

The direct sum of three distinct non-coplanar lines
through the origin L1 ⊕ L2 ⊕ L3 yields R3.

(Go to TOC)
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8. Linear Combinations

Note : From now on, αi, etc., will be elements of the base
field F and xi, yi, etc., will be vectors from the space X.

Definition 10 (Finite Linear Combination) Let Y ⊆ X. A
vector x ∈ X is a (finite) linear combination of vectors in Y
iff there is a finite set of vectors {yi} ⊆ Y and scalars {αi}
such that

x =
n∑

i=1

αi yi

Note : The sum is not required to be unique. (Unlike ⊕.)

Example 3 Let Y = {(1, 0), (1, 1), (0, 1)} ⊂ R2. Then the
vector x = (2, 3) can be written as x = 2(1, 0) + 3(0, 1) or as
x = 2(1, 1) + 1(0, 1) or as x = −1(1, 0) + 3(1, 1).

Intro to Linear Algebra MAT 5230 – p. 29/130



Generated Subspace & Span

Theorem 9 Let ∅ 6= Y ⊆ X. Define

V (Y )
∆
= {all linear combinations from Y }.

Then V (Y ) is a subspace of X and is called the subspace
generated by Y .

Definition 11 (Span) Y spans X if and only if V (Y ) = X.

Example 4 Let Y = {(1, 0), (1, 1), (0, 1)}. Then Y spans R2.
(Exercise.)

Example 5 Let Z = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.
Does the set Z span R3?
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Dependence and Independence

Definition 12 (Linear Dependence) Let {x1, x2, . . . , xm}
be a nonempty subset of X. If there exists a set of scalars
{αi}, not all zero, such that α1x1 + α2x2 + · · · + αmxm = 0,
then {x1, x2, . . . , xm} is linearly dependent.

Definition 13 (Linear Independence) If the nonempty
subset {x1, x2, . . . , xm} of X is not linearly dependent, then
{x1, x2, . . . , xm} is linearly independent.

Example 6 Y and Z from the previous examples are both
linearly dependent.

Example 7 Let W = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Then W is
linearly independent.
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More Examples

Example 8 Let V = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)}. Is V
linearly independent? Does V span R4?

Example 9 Let U = {(0, 0, 0), (1, 0, 0), (0, 1, 0)}. Is U linearly
independent?

Example 10 Let P = {1, x, x2, x3, . . . }. Then V (P) = P, the
set of all real polynomials; i.e., P spans P. Is P linearly
independent? Yes! But how do we show this? Consider

p(x) =

n∑

i=0

αixi = 0

and note that the only nth degree polynomial with n+ 1
roots, is p(x) ≡ 0.

(Go to TOC)
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9. Linear Independence

Theorem 10 (Uniqueness) Let Y = {x1, x2, . . . , xm} be a
linearly independent set of vectors. If

∑m
i=1 αixi =

∑m
i=1 βixi,

then αi = βi for i = 1..m.
Pf. Simple calculation.

Theorem 11 A set Y is linearly dependent if and only if
some vector x ∈ Y can be written as a linear combination of
other vectors in Y .

Add any number of vectors to a dependent set, it will
still be dependent.

Add one vector to an independent set, it may or may
not stay independent.
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Infinite Example

Example 11 Let P = {1, x, x2, x3, . . . }. Then V (P) = P, the
set of all real polynomials; i.e., P spans P. Is P linearly
independent? Yes! But how do we show this? Let p(x) ∈ P.
Then, for some n,

p(x) =
n∑

i=0

αixi = 0.

Note that the only nth degree polynomial with n+ 1 roots, is
p(x) ≡ 0. Hence all αi are 0.
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Unique Expression

Theorem 12 (Uniqueness of Expression) A finite
nonempty set Y is linearly independent if and only if, for
each nonzero y ∈ V (Y ), there exists a unique subset
{x1, . . . , xm} of Y and a unique set of scalars {α1, . . . , αm}
such that y =

∑m
i=1 αixi.

Assignment :

1. Prove Theorem 11

2. Prove Theorem 12

Theorem 13 Y is linearly independent if and only if Z ( Y
implies V (Z) 6= V (Y ).
Pf. Exercise.
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Basis of a Vector Space

Definition 14 ( Hamel basis ) A (finite) set Y ⊆ X is a
Hamel basis (or just a basis) if and only if

1. Y is linearly independent

2. V (Y ) = X

Id est, Y is a (finite) linearly independent spanning set.

Theorem 14 If Y is linearly independent, then Y is a basis
for V (Y ).
Pf. Exercise.

Note : The theorem Every vector space has a basis is a
result of the Axiom of Choice.

(Go to TOC)

Intro to Linear Algebra MAT 5230 – p. 36/130

http://mathworld.wolfram.com/HamelBasis.html


10. Basis of a Vector Space

Recall:
Definition 15 (Hamel Basis) A set Y ⊆ X is a Hamel
Basis (or just a basis) if and only if

1. Y is linearly independent

2. V (Y ) = X

Note : The theorem «Every vector space has a basis» is a
result of the Axiom of Choice.

Exempli gratia

{(0, 1), (1, 2)} is a basis of R2

{(1, 1, 0), (1, 0, 1), (0, 1, 1)} is a basis of R3

{(1, 1, 0), (1, 2, 0), (2, 1, 0)} is not a basis of R3

Intro to Linear Algebra MAT 5230 – p. 37/130



Basis Properties

Theorem 15 (Uniqueness of Scalars) Let {x1, x2, . . . , xn}
be a basis for X. Then for each vector x ∈ X, there is a
unique set of scalars {α1, α2, . . . , αn} such that

x = α1x1 + α2x2 + · · · + αnxn

Pf. Standard calculation.

Theorem 16 (Maximum Independent Set Size) Suppose
that B = {x1, x2, . . . , xn} is a basis of X with n finite and
Y = {y1, y2, . . . , ym} is a set of linearly independent vectors.
Then m ≤ n.

Note : n is finite is necessary.
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Proof of Theorem 16 - Outline

Proof Outline .

1. Assume m > n.

2. Write y1 as a linear combination of the xi. At least one
coefficient can’t be 0, say the coefficient of xn (reindex
x’s if necessary).

3. Replace xn in B with y1. Show B still is a basis for X.

4. Start over with y2 and the “new” B. Replace xn−1 by y2.

5. Continue the process until yn replaces x1.

6. B - still a basis - now is {y1, y2, . . . , yn}.

7. Thus yn+1 can be written as as linear combination from
B contradicting the linear independence of Y . Hence
m ≤ n.
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Dimension

Theorem 17 If B = {x1, x2, . . . , xN} is a basis of X for
some N <∞, then every basis of X contains exactly N
vectors.

Pf. • Let B1 be a basis with n vectors and B2 be a basis
with m vectors.
• Apply Theorem 16 with B1 as the basis and B2 as the
linearly independent set. Therefore m ≤ n.
• Now apply Theorem 16 with B2 as the basis and B1 as the
linearly independent set. Therefore n ≤ m.
• Since m ≤ n and n ≤ m, it follows that m = n.

(Go to TOC)
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11. Dimension of a Vector Space

Definition 16 (Dimension) If X has a finite basis of n
vectors, then X is finite dimensional and has dimension
dim(X) = n. If X is not finite dimensional, then X has
infinite dimension and dim(X) = ∞.

Example 12 Several standard spaces:

dim(Rn) = n

dim(Pn) = n+ 1

dim(R∞) = ∞ The space of real sequences is large
(but it’s a “small ∞”)

dim(P) = ∞ (another “small ∞,” isomorphic to R∞)

Intro to Linear Algebra MAT 5230 – p. 41/130



Examples

Example 13 Infinite dimensional spaces

dim(C[0, 1]) = ∞ The space of continuous functions on
[0, 1] is very large (a “big ∞”)

dim(B(R)) = ∞ with B(R) = {bounded real functions }

Is the following true:
Let Z be an arbitrary set and X an arbitrary vector
space over F . The space of all functions from Z to X,
written XZ , is a vector space over F with dimension
dim(XZ) = dim(X)|Z|
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Basis & Dimension Facts

Basis Facts

Every vector space has a basis (requires the Axiom of Choice)

Every linearly independent set can be extended to a basis

A linearly independent set can be no larger than a basis

A set containing more vectors than a basis must be linearly

dependent

Any two bases for a vector space contain the same number of

vectors (finite dimensional case)

If X has a set with n linearly independent vectors and every

set of n + 1 vectors is dependent, then dim(X) = n

If Y is a subspace of X, then dim(Y ) ≤ dim(X).
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“Two Out of Three Ain’t Bad”

Theorem 18 Suppose X is a vector space with dim(X) = n
and Y ⊆ X. If any two of the following hold, then the third
also holds.

1. Y spans X

2. Y is linearly independent

3. Y contains exactly n vectors

Theorem 19 Suppose that dim(X) <∞ and that
X = Y ⊕ Z. Then dim(X) = dim(Y ) + dim(Z).

Nota Bene : Recall that ⊕ is the “interior analogue” of × and
that if X = Y × Z, then dim(X) = dim(Y ) × dim(Z).
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“Sum of Dimensions” Proof

Proof of Theorem 19 (3.3.43) .

Since dim(X) < ∞, so are dim(Y ) and dim(Z). Therefore there

are bases of Y and Z: BY = {y1, . . . , yn} and BZ = {z1, . . . , zm}.

Set B = BY ∪ BZ . Let

0 =

n∑

i=1

αiyi +

m∑

i=1

βizi

be a linear combination from B. Since representation of vectors is

unique in X = Y ⊕ Z, we have that 0 =
∑n

i=1 αiyi and

0 =
∑m

i=1 βizi Therefore 0 = αi = βj for all i and j as BY and BZ

are independent. I.e., B is linearly independent.

Since X = Y ⊕ Z, it is clear that B spans X. Hence,

|B| = n + m = dim(X).

(Go to TOC)
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12. Subspaces and Direct Sums

The theorem Every linearly independent set can be extend-
ed to a basis has:
Corollary 20 Suppose X is an n-dimensional vector space
with an m-dimensional subspace Y. Then there exists a
subspace Z of dimension (n−m) such that X = Y + Z.

Pf. (Sketch) Take bases
BX for X and BY for
Y . Eliminate the por-
tion of BX dependent on
BY . The remaining vec-
tors form a basis for Z.

Note : Z need not be
unique. (Z= red or blue)
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Linear Transformations

Definition 17 (Linear Transformation) A mapping T from
a vector space X into a vector space Y, both spaces over
the field F, is a linear transformation, written as T ∈ L(X,Y ),
if and only if for all x ∈ X, y ∈ Y, and α ∈ F, we have

1. T (x+ y) = T (x) + T (y)

2. T (αx) = αT (x)

A nonlinear transformation is a mapping that is not linear.

Theorem 21 (Superposition Principle) T ∈ L(X,Y ) if and
only if

T

(
m∑

i=1

αixi

)
=

m∑

i=1

αiT (xi)
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Examples of Linear Transformations

Example 14

T : R2 → R2 by T ([x, y]) = [2x+ 3y, x− y]

T : R2 → R1 by T ([x, y]) = [x]

D : Pn → Pn−1 by D(p) = d
dx p(x)

I : C[0, 1] → R by I(f) =
∫ 1
0 f(t) dt

Let k ∈ C[a, b] × C[a, b] such that for any x ∈ C[a, b],

x̂(s) =

∫ b

a

x(t)k(s, t) dt ∈ C[a, b]

Then ·̂ : C[a, b] → C[a, b] is a linear transformation.a

aFredholm Integral Equationof the First Typeor a kernel transform

(Go to TOC)
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13. Examples of Linear Transformations

Example 15

Let Lc
1 = {f : R → C | f ∈ C(R) and

∫
R |f | <∞}. Now

define the Fourier transform F(f) ∈ Lc
1 by

F(f)(s) =

∫

R

f(t) e−ist dt

Then F : Lc
1 → Lc

1 is a linear transformation.

Let z ∈ C. Then z̄ = (the complex conjugate of z) is a
nonlinear transformation.

Let | · | be the absolute value function on R. Is | · | a
linear transformation from R to R?
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Null Space and Range Space

Definition 18 Let T ∈ L(X,Y ). Then the

1. null space N (T ) (or kernel ker(T )) is the set

N (T ) = {x ∈ X | T (x) = 0},

2. range space R(T ) (or image space) is the set

R(T ) = {y ∈ Y | y = T (x) for some x ∈ X} = T (X).

Theorem 22 Let T ∈ L(X,Y ). Then

1. N (T ) is a subspace of X,

2. R(T ) is a subspace of Y.

Pf. Exercise (3.4.20)
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Range & Dimension

Theorem 23 If T ∈ L(X,Y ), then dim(R(T )) ≤ dim(X).

Pf. Assume X 6= {0} 6= R(T ), otherwise the result is trivial.
Set n = dim(X) > 0. Choose {y1, . . . , yn+1} ⊆ dim(R(T )).
For each i, find xi such that T (xi) = yi. Since dim(X) = n,
we know that there are scalars αi so that

α1x1 + · · · + αn+1xn+1 = 0

Applying T to this linear combination yields

α1y1 + · · · + αn+1yn+1 = 0

Since the yi were arbitrary, every subset of dim(R(T )) with
n+ 1 vectors is linearly dep. Thence dim(R(T )) ≤ n.

(Go to TOC)
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14. The Dimension Theorem

Theorem 24 The inverse image of a basis under a linear
transformation is linearly independent. I.e., Let T ∈ L(X,Y )
and let BY = {yi}. For each i, choose an xi such that
T (xi) = yi. Then the set {xi} is linearly independent.

Pf. Exercise (3.4.24)

Theorem 25 (The Dimension Theorem) Let T ∈ L(X,Y )
with dim(X) <∞. Then

dim(R(T )) + dim(N (T )) = dim(X).

Pf. Set dim(X) = n and dim(N (T )) = s and set r = n− s.
(Need to show : dim(R(T )) = r = n− s.)
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The Dimension Theorem Proof

Pf. Find a basis for N (T ) labeling the vectors {e1, . . . , es}.
Extend this set to a basis for X by adding r vectors to have
B = {x1, . . . , xr, e1. . . . , es}. Since B is a basis, then T (B)
spans R(T ). Since T (ei) = 0, then T ({x1, . . . , xr}) spans
R(T ). Set yi = T (xi); so {y1, . . . , yr} spans R(T ).
Suppose a linear combination α1y1 + · · · + αryr = 0. Then
because

∑
r αiT (xi) = T (

∑
r αixi), we have that∑

r αixi ∈ N (T ), thus
∑

r αixi =
∑

s γiei which can be
written as

α1x1 + · · · + αrxr − γ1e1 − · · · − γses = 0

which implies each αi = 0. Hence dim(R(T )) = r.

– What about the cases s = 0 and n? (Group-Project time!)

(Go to TOC)
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“Your Turn”

The Setup . Define D : R4 → R4 by

D
(
[x1, x2, x3, x4 ]

)
= [x2, 2x3, 3x4, 0 ]

The Project .

1. Is D a linear transformation?

2. What is R(T )?

3. Find dim(R(T )).

4. What is N (T )?

5. Find dim(N (T )).

6. Calculate dim(R(T )) + dim(N (T )).

(Go to TOC)

Intro to Linear Algebra MAT 5230 – p. 54/130



15. Rank & Nullity

Definition 19 (Rank and Nullity of a Linear Transformation)
Let T ∈ L(X,Y ).

The rank ρ of T is the dimension of the range space;
ρ(T ) = dim(R(T ))

The nullity ν of T is the dimension of the nullspace;
ν(T ) = dim(N(T ))

Corollary 26 (Fundamental Theorem of Linear Algebra)
Let T ∈ L(X,Y ) where dim(X) = n. Then

ρ(T ) + ν(T ) = n

Pf. X
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“Affine Nullspace”

Corollary 27 Let T ∈ (X,Y ) where dim(X) <∞, and let
B = {x1, . . . , xs} be a basis for N(T ) so that dim(N(T )) = s.
Then

1. a vector x ∈ X satisfies T (x) = 0 iff there is a unique
set of scalars αi s.t. x =

∑s
i=1 αixi,

2. a vector y0 ∈ Y is in R(T ) iff there is at least one vector
x ∈ X s.t. y0 = T (x),

3. if vectors x0 ∈ X and y0 ∈ Y are s.t. T (x0) = y0, then
x ∈ X satisfies T (x) = y0 iff there is a unique set of
scalars βi s.t. x = x0 +

∑s
i=1 βixi.

Pf. X
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Inverses

Theorem 28 Let T ∈ L(X,Y ).

1. T−1 exists iff T (x) = 0 implies x = 0; i.e., N(T ) = {0}.
2. If T−1 exists, then T−1 ∈ L(R(T ), X).

Pf. 1. (⇐) Assume N(T ) = {0}. Then T (x1) = T (x2) ⇔
T (x1) − T (x2) = 0 ⇔ T (x1 − x2) = 0 ⇔ x1 − x2 ∈ N(T ) ⇔
x1 = x2.
(⇒) Now assume that T−1 exists and that T (x) = 0. Since
T (0) = 0, then T (x) = T (0). Whence x = 0.

2. Assume that T is nonsingular and that T (x1) = y1,

T (x2) = y2. Then T−1(y1 + y2) = T−1(T (x1) + T (x2)) =

T−1(T (x1 + x2)) = x1 + x2 = T−1(y1) + T−1(y2). For α ∈ F,

T−1(αy1) = T−1(αT (x1)) = T−1(T (αx1) = αx1 = αT−1(y1).
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Examples

Example Set 16

Let T ([a, b]) =

[
1 2

1 0

]
[a, b]. Show T is nonsingular.

Let S([a, b]) =

[
6 3

2 1

]
[a, b]. Show T is singular.

D : P → P defined by D(p) =
dp

dx
is singular.

Is I : P → P defined by I(p) =
∫
p dx nonsingular?

Is T ([a, b]) = [a+ b, 0, a− b, 0, 0] invertible?

(Go to TOC)
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Project Solution

The Group-Project solution is much easier when looking at
the spaces from a different “dimension.”

The Setup . Define D : R4 → R4 by

D
(
[x1, x2, x3, x4 ]

)
= [x2, 2x3, 3x4, 0 ]

A Solution . Consider T : P3 → P3 with T (p) = p′. (P3 ∼= R4)

R(T ) = {polynomials of degree 2} ∼= R3

N(T ) = {constant polynomials} ∼= R1

4 = 3 + 1 ⇒ R4 ∼= P3 =
{
p ∈ P3 | p(0) = 0

}
⊕ N(T )

(Go to TOC)
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16. Singular and Nonsingular Examples

Example Set 17

Let T ([a, b]) =

[
1 2

1 0

]
[a, b]. Show T is nonsingular.

Let S([a, b]) =

[
6 3

2 1

]
[a, b]. Show T is singular.

D : P → P defined by D(p) =
dp

dx
is singular.

Is I : P → P defined by I(p) =
∫
p dx nonsingular?

Is T ([a, b]) = [a+ b, 0, a− b, 0, 0] invertible?
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“Inverse Results”

Theorem 29 Let T ∈ L(X,Y ) with dim(X) <∞. Then T is
invertible if and only if ρ(T ) = dim(X). T is said to have “full
rank.”

Pf. X

Theorem 30 Let T ∈ L(X,Y ) with dim(X) = dim(Y ) = n
where n <∞. Then T is invertible if and only if R(T ) = Y.

Pf. (⇒) T invertible implies that dim(R(T )) = n = dim(Y ).
Since R(T ) is a subspace of Y, then R(T ) = Y.

(⇐) Choose a basis B = {y1, . . . , yn} for R(T ) = Y. Then,
since T−1(B) is an independent set of size n, it forms a
basis for X. Hence the only set of scalars for which∑

i αixi = 0 is αi = 0. Whence N(T ) = {0}, so T is invertible.
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Collected Results, I

Theorem 31 (Invertible Linear Transformations) Let X and Y

be vector spaces over F and let T ∈ L(X,Y ). TFAE:

1. T is invertible or nonsingular

2. T is injective or 1–1

3. T (x) = 0 implies x = 0; i.e., N(T ) = {0}
4. For each y ∈ Y, ∃ a unique x ∈ X such that T (x) = y

5. If T (x1) = T (x2), then x1 = x2

6. If x1 6= x2, then T (x1) 6= T (x2),

If X is finite dimensional, then TFAE:

7. T is injective

8. ρ(T ) = dim(X)
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Collected Results, II

Theorem 32 (Surjective Linear Transformations) Let X
and Y be vector spaces over F and let T ∈ L(X,Y ). TFAE:

1. T is surjective or onto

2. For y ∈ Y , there is at least one x ∈ X such that
T (x) = y

If X and Y are finite dimensional, then TFAE:

3. T is surjective

4. ρ(T ) = dim(Y )

Pf. X
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Collected Results, III

Theorem 33 (Bijective Linear Transformations) Let X
and Y be vector spaces over F and let T ∈ L(X,Y ). TFAE:

1. T is bijective or onto

2. For y ∈ Y , there is a unique x ∈ X such that T (x) = y

If X and Y are finite dimensional, then TFAE:

3. T is surjective

4. ρ(T ) = dim(X) = dim(Y )

Theorem 34 (Common Finite Dimension) Let X and Y
be vector spaces over F with finite dimension n and
T ∈ L(X,Y ). Then

T : injective ⇔ T :surjective ⇔ T :bijective ⇔ T : invertible
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Transformation Spaces

Definition 20 For S and T in L(X,Y ) and α in F, define

1. S + T by (S + T )(x)
∆
= S(x) + T (x)

2. αS by (αS)(x)
∆
= αS(x)

3. S ◦ T by (S ◦ T )(x)
∆
= S (T (x))

Theorem 35 L(X,Y ) is a vector space over F (using 1 & 2)

Theorem 36 L(X,X) is an associative algebra with identity
over F (using 1, 2, & 3, and identity I(x) = x)

(Go Back) (View LATEX source)
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17. Transformation Spaces

Definition 21 For S and T in L(X,Y ) and α in F, define

1. S + T by (S + T )(x)
∆
= S(x) + T (x)

2. αS by (αS)(x)
∆
= αS(x)

3. ST by (ST )(x)
∆
= S (T (x)) when range(T ) ⊆ dom(S)

Theorem 37 Let S, T, U ∈ L(X,X). Then

1. If ST = US = I, then S is bijective and S−1 = T = U.

2. If S is bijective, then (S−1)−1 = S.

3. If S and T are bijective, then (ST )−1 = T−1S−1.

4. If S is bijective and α 6= 0, then (αS)−1 = (1/α) · S−1.
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Polynomials of Transforms

Theorem 38 L(X,X) is an associative algebraa with
identity over F (using 1, 2, & 3, and identity I(x) = x).
L(X,X) is usually noncommutative.

Definition 22 (Powers of Transforms) Let T ∈ L(X,X).

Then set T 0 = I and, for n > 0, define T (n) ∆= T · T (n−1) and
T (−n) ∆=

(
T−1

)n
.

Definition 23 Let p ∈ Pn, so that
p(λ) = a0 + a1λ+ · · · + anλ

n. For T ∈ L(X,X), define

p(T ) = a0 I + a1T + · · · + anT
n =

n∑

i=0

αiT
i.

a “Vector space plus multiplication.” See pg. 56 and 104 of thetext.
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Finite Dimension Structure Theorem

Definition 24 X is isomorphic to Y, written X ∼= Y, if and
only if there is a bijection T ∈ L(X,Y ).

Theorem 39 (Structure Theorem) Every n-dimensional
vector space X over the field F is isomorphic to Fn.

Pf. Choose a basis B = {e1, . . . , en} for X. Then define
T ∈ L(X,Fn) by

T

(
n∑

i=1

αiei

)
= [α1, α2, . . . , αn]

Corollary 40 Let F be a field and n be a positive integer.
There is exactly one vector space of dimension n over F.

(Go to TOC)
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18. Linear Functionals

Definition 25 Let X be a vector space over F . Then
f ∈ L(X,F ) is called a linear functional.

Example Set 18

Let f ∈ C[a, b]. Then F (f) =
∫ b

a f(t) dt is a linear
functional.

Let f ∈ C[a, b] and choose k ∈ C[a, b]. Then

Fk(f) =
∫ b

a f(t)k(t) dt is a linear functional.

Let f ∈ C[a, b] and x0 ∈ [a, b]. Is df
dt (x0) a linear

functional?

Let F be a field. The mappings proji : Fn → F for
i = 1..n given by proji

(
[α1, α2, . . . , αn]

)
= αi are linear

functionals. φ =
∑
αi proji is also a linear functional.

Intro to Linear Algebra MAT 5230 – p. 69/130



Vector Space of Linear Functionals

Definition 26 Let X be a vector space over F . Define
Xf = L(X,F ). When f ∈ Xf is evaluated at the vector

x ∈ X, we use the notation f(x)
∆
= 〈x, f〉. Using x′ in place of

f ∈ Xf , we see

(f1 + f2)(x) = 〈x, x′1 + x′2〉
∆
= 〈x, x′1〉 + 〈x, x′2〉

= f1(x) + f2(x)

and

(αf)(x) = 〈x, αx′〉 ∆
= α〈x, x′〉

= αf(x)

Theorem 41 Xf = L(X,F ) is a vector space over F called
the algebraic conjugate of X.
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Algebraic Conjugate Basis

Theorem 42 Let X be a vector space with basis
B = {e1, . . . , en} and let {α1, . . . , αn} be a set of arbitrarily
chosen scalars. Then there is a unique linear functional
x′ ∈ Xf such that 〈ei, x′〉 = αi for i = 1..n.

Pf. (∃) For every x ∈ X, we have unique scalars ξi such that
x =

∑
n ξiei. Define x′ ∈ Xf by 〈x, x′〉 =

∑
n αiξi. If x = ei for

some i, then ξi = 1 and ξj = 0 for every j 6= i. Hence
〈x, x′〉 = αi; i.e., 〈ei, x′〉 = αi.
(!) Suppose 〈ei, x′1〉 = αi and 〈ei, x′2〉 = αi for i = 1..n. Then
〈ei, x′1〉 − 〈ei, x′2〉 = 0 for i = 1..n, and so 〈ei, x′1 − x′2〉 = 0 for
i = 1..n. This implies that x′1 = x′2.

Definition 27 ( Kronecker Delta ) Set δij =

{
1 if i = j

0 if i 6= j
.

(Go to TOC)
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19. Conjugate Dimension Theorem

Theorem 43 Let X be a finite dimensional vector space
with basis B = {e1, . . . , en}. Then there exists a unique basis
B′ = {e′1, . . . , e′n} for Xf such that 〈ei, e′j〉 = δij ; we call B′ the

dual basis of B. Further dim(X) = n = dim(Xf ).

Pf. There exists a unique set of linear functionals B′ = {e′j}
such that 〈ei, e′j〉 = δij for i, j = 1..n which are found by
applying the previous theorem to the sets
Aj = {δij|j = 1..n}.
(B′ is linearly independent) Since

∑
βie

′
i = 0 implies

0 =

〈
ej ,
∑

i

βie
′
i

〉
=
∑

i

βi〈ej , e′i〉 =
∑

i

βiδij = βj
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Conjugate Dimension Theorem, II

(Pf.) (B′ spans Xf ) Let x′ ∈ Xf and define αi = 〈ei, x′〉.
(This form is often called a projection.) For x ∈ X, there are
scalars so that x =

∑
i ξiei. Then

〈x, x′〉 =

〈
∑

i

ξiei, x
′

〉
=
∑

i

〈ξiei, x′〉 =
∑

i

ξi〈ei, x′〉 =
∑

i

ξiαi

It also follows that 〈x, e′j〉 =
∑

i ξi〈ei, e′j〉 = ξj . Combine these
two results to obtain

〈x, x′〉 =
∑

i

αi〈x, e′i〉 =

〈
x,
∑

i

αie
′
i

〉

which gives us x′ =
∑

i αie
′
i.

(Go to TOC)
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20. Algebraic Transpose

Definition 28 (Algebraic Transpose) Let S ∈ L(X,Y ).

Then ST : Y f → XF given by 〈x, ST y′〉 = 〈Sx, y′〉 is the
algebraic transpose of S.

Example 19 Let X = R3 and Y = R2. Define S ∈ L(R3,R2)

by y = S(x) = [ 1 1 0
0 1 1 ]

[
x1

x2

x3

]
and y′ ∈ Y f by 〈y, y′〉 = [1, 1] [ y1

y2
] .

Then x′ = ST (y′) is found by

〈x, x′〉 = 〈x, ST y′〉 = 〈Sx, y′〉 x′(x) = (ST (y′))(x)

〈x, x′〉 = 〈[ 1 1 0
0 1 1 ]

[
x1

x2

x3

]
, y′〉 x′(x) = y′(S(x))

〈x, x′〉 = 〈
[

x1+x2

x2+x3

]
, y′〉 x′(x) = y′(

[
x1+x2

x2+x3

]
)

〈x, x′〉 = x1 + 2x2 + x3 x′(x) = x1 + 2x2 + x3
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The Space of Algebraic Transposes

Theorem 44 Let ST be the algebraic transpose of S where
S ∈ L(X,Y ). Then ST ∈ L(Y f, Xf ).

Pf. (Calculation.)
1. ST (y′1 + y′2) = ST (y′1) + ST (y′2) :

〈x, ST (y′1 + y′2)〉 = 〈Sx, (y′1 + y′2)〉 = 〈Sx, y′1〉 + 〈Sx, y′2〉
= 〈x, ST y′1〉 + 〈x, ST y′2〉

2. ST (αy′) = αST (y′) :

〈x, ST (αy′)〉 = 〈Sx, αy′〉 = α〈Sx, y′〉
= α〈x, ST (y′)〉 = 〈x, α ST (y′)〉
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Algebra of Algebraic Transposes

Theorem 45 Let I be the identity transform of L(X,X).
Then IT is the identity transform of L(Xf, Xf ).

Theorem 46 Let 0 be the zero transform of L(X,Y ). Then
0T is the zero transform of L(Y f, Xf ).

Theorem 47 Let R,S ∈ L(X,Y ) and T ∈ L(Y, Z) and let RT,

ST, and T T be the respective transposes. Then

1. (R+ S)T = RT + ST

2. (TS)T = ST T T

Exercise 3.52.32 (Pg. 113.) Prove the theorems.

(Go to TOC)
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21. Bilinear Functionals

Recall : We have a+ bi = a− bi for any complex number.

Definition 29 (Conjugate Functional) Let X be a vector
space over C. A mapping g : X → C is a conjugate
functional iff g(α1x1 + α2x2) = α1 g(x1) + α2 g(x2) for all
xi ∈ X and αi ∈ C

Definition 30 (Bilinear Form) Let X be a vector space
over C. A mapping g : X ×X → C is a bilinear form or
bilinear functional iff for all x, xi and y, yi ∈ X and αi, βi ∈ C

1. g(α1x1 + α2x2, y) = α1 g(x1, y) + α2 g(x2, y)

2. g(x, β1y1 + β2y2) = β1 g(x, y1) + β2 g(x, y2)

That is, g is linear in the first variable and conjugate linear
in the second variable.
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Examples

Example Set 20

1. Let X = C2 and g be given by

g(z1, z2) = Re(z1)Re(z2) + Im(z1)Im(z2).

2. Let X = R2 and h be given by

h(x, y) = ~x · ~y = x1y1 + x2y2.

3. Let X be a vector space over C and let P,Q ∈ Xf .

Then k(x1, x2) = P (x1)Q(x2) is a bilinear functional.

4. The conjugate of a bilinear functional is also a bilinear
functional. I.e., h(x, y) = g(x, y).
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Definitions

Definition 31 Let X be a vector space over C and g be a
bilinear functional on X. Then for all x, y ∈ X,

g is symmetric iff g(x, y) = g(y, x).

g is positive iff g(x, x) ≥ 0.

g is strictly positive iff g(x, x) > 0 whenever x 6= 0.

g̃(x) = g(x, x) is the quadratic form induced by g.

Example 21 For h : R2 → R of Example Set 20, No 2, the
induced quadratic form is h̃(x) = h̃([x1, x2]) = x2

1 + x2
2.

(Go to TOC)
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22. Quadratic Forms & Inner Products

Theorem 48 Let g be a bilinear functional. Then

g(x, y) + g(y, x)

2
= g̃

(
x+ y

2

)
− g̃

(
x− y

2

)

Theorem 49 (Polarization) Let X be a vector space over
C and g be a bilinear functional on X. Then

g(x, y) =

[
g̃

(
x+ y

2

)
− g̃

(
x− y

2

)]

+ i

[
g̃

(
x+ iy

2

)
− g̃

(
x− iy

2

)]

Pfs . X
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“Symmetry is Real”

Theorem 50 Let g and h be bilinear functionals on the
complex vector space X. If g̃ = h̃, then g = h.

Theorem 51 A bilinear functional g on a complex vector
space X is symmetric iff g̃ is real.

Pf. (⇒) Let g be symmetric, then g(x, y) = g(y, x) so that
g̃(x) = g̃(x). Hence g̃ is real.a

(⇐) If g̃ is real, set h(x, y) = g(y, x). Then
h̃(x) = g̃(x, x) = g(x, x) = g̃(x); i.e., h̃ = g̃. By the previous
theorem, h = g, and hence g(x, y) = g(y, x). That is g is
symmetric.

a z = z̄ ⇒ x + iy = x − iy ⇒ y = 0 ⇒ z ∈ R.
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Inner Product

Ex. Work through example 3.6.18 on pg. 117.

Definition 32 (Inner Product) A bilinear functional g is an
inner product iff

1. g is strictly positive g(x, x) > 0 whenever x 6= 0

2. g is symmetric g(x, y) = g(y, x)

Definition 33 (Inner Product) (Alternate Definition) A
function (·, ·) : X ×X → C is an inner product iff

1. (x, x) > 0 whenever x 6= 0 and (0, 0) = 0

2. (x, y) = (y, x)

3. (αx+ βy, z) = α(x, z) + β(y, z)

4. (x, αy + βz) = ᾱ(x, y) + β̄(x, z)
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Inner Product Space

Definition 34 A complex vector space with an inner
product is an inner product space. A subspace of an inner
product space with the restricted inner product is an inner
product subspace.

Definition 35 Let X be an inner product space. Two
vectors x and y are orthogonal, written as x ⊥ y, iff
(x, y) = 0. If x is orthogonal to every vector in a set A ⊆ X,
then x ⊥ A.

Example Set 22

1. Let X = R2 and let (x, y) = x1y1 + x2y2. Then {X; (·, ·)}
is a real inner product space.

2. Let X = Cn and let (u, v) =
∑

n uivi. Then {X; (·, ·)} is a
complex inner product space.

(Go to TOC)
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23. Inner Product Space Examples

Example 23 Let X = CC[0, 1] and set (f, g) =

∫ 1

0
f(t)g(t) dt.

1. (t2 + it, 1 − it) =

∫ 1

0
(t2 + it)(1 + it)dt =

3

4
i

2. (t2 + it, 36t+ (2t− 25)i) = 0, thence it follows that
(t2 + it) ⊥ (36t+ (2t− 25)i).

3. (e2πkit, e2πnit) =

∫ 1

0
e2π(k−n)itdt =

i

2π(n− k)
e−2πi(n−k)t

∣∣∣∣
1

0

So (e2πkit, e2πnit) = δkn. Thus E = {e2πnit : n ∈ Z} forms
a set of mutually orthogonal functions.

Intro to Linear Algebra MAT 5230 – p. 84/130



Orthogonal Polynomials

Example 24 Let X = CR[0, 2π] and define the inner product

(f, g) =

∫ 2π

0
f(t)g(t) dt.

1. (t2 + t, 1 − t) =

∫ 2π

0
(t2 + t)(1 − t)dt = 2π2(1 − 2π2)

2. (cos(kt), cos(nt)) =

∫ 2π

0
cos(kt) cos(nt)dt =

π

2
δkn. So

{cos(nt) : n = 0..∞} is a mutually orthogonal set.

3. Set cos(t) = x. Then cos(nt) = cos(n arccos(x)) becomes
a polynomial in x. The inner product becomes

(f, g) =
2

π

∫ +1

−1
f(t)g(t)

1√
1 − t2

dt
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Orthogonal Polynomials, II

Example 24

(3.) Set Tn(x) = cos(n arccos(x)). Then (Tk, Tn) = δkn, so that
{Tn, n = 0..∞} forms an orthogonal set of polynomials.
The first few Chebyshev polynomials are T0(x) = 1 and

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

(Go to TOC)
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24. Projections

Definition 36 Let X = X1 ⊕X2 and let x = x1 + x2 be the
unique representation of x ∈ X relative to X1 ⊕X2. Then
define the mapping P by P (x) = x1. We call P the projection
on X1 along X2.

Theorem 52 Let X = X1 ⊕X2 and P be the projection on
X1 along X2. Then

1. P ∈ L(X,X) and P ∈ L(X,X1)

2. R(P ) = X1

3. N(P ) = X2

Pf. X

Example 25 Let X = R2 and P ([x1, x2]) = x2.
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Projections, II

Example 26 Let X = P3 and P (
∑ 3

i=0 αix
i) = α0 + α2x

2.

Theorem 53 Let P ∈ L(X,X). Then P is a projection on
R(P ) along N(P ) iff P 2 = P.

Pf. (⇒) Suppose that P is the projection on R(P ) along
N(P ). Then X = R(P ) ⊕ N(P ). Let x = x1 + x2. Then
P 2(x) = P (P (x1 + x2)) = P (x1) = x1 Hence P 2 = P.

(⇐) Now suppose that P 2 = P. (i) Let y ∈ R(P ). Then
∃x ∈ X so that P (x) = y. Whence P (P (x)) = P (y). But
P 2 = P, so P (P (x)) = P (x) = y; i.e. P (y) = y. If y is also in
N(P ), then P (y) = 0 which implies that y = 0. Hence
R(P )∩N(P ) = {0}. (ii) For x ∈ X, x = P (x) + (I − P )(x). Set
x1 = P (x) and x2 = (I − P )(x) = x− x1. Thence X is equal
to X1 ⊕X2 with P being the projection on X1 along X2.
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Projection “Symmetry”

Definition 37 P ∈ L(X,X) is idempotent iff P 2 = P.

Theorem 54 P is a projection on X1 along X2 iff (I − P ) is
a projection on X2 along X1.

Corollary 55 If P is projection, then X = R(P ) ⊕ N(P )

Example Set 27 Let X = R2.

Set R([ x1

x2
]) = [ 0 0

0 1 ] [ x1

x2
] =

[
0
x2

]
. Is R a projection?

Set S([ x1

x2
]) =

[
1 −1
0 0

]
[ x1

x2
] =

[
x1−x2

0

]
. Is S a projection?

Set T ([ x1

x2
]) = [ 0 0

0 2 ] [ x1

x2
] =

[
0

2x2

]
. Is T a projection?

Definition 38 P is an orthogonal projection on an inner
product space iff R(P ) ⊥ N(P ).
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Projection ExampleS

(Eg.) In R2, set S([ x1

x2
]) =

[
1 −1
0 0

]
[ x1

x2
] =

[
x1−x2

0

]
.
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Projection Example in R3

(Eg.) In R3, set X1 =

{[
−(r+t)

r+1
t−1

]}
and X2 =

{[
2t
2t
t

]}
.

(Go to TOC)
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25. Eigenvalues

Definition 39 Let T ∈ L(X,X), where X is an
n-dimensional vector space over F. A scalar λ such that
T (x) = λx for some nonzero x is called an eigenvalue of T.

Theorem 56 Let T ∈ L(X,X) and let λ ∈ F. Then
Nλ = {x |T (x) = λx} is a subspace of X. This subspace is
equal to N(λI − T ) and, if nontrivial, is called an
eigenspace.

Pf. X

Background: Let X be an n-dimensional vector space over F . Then
X ∼= Fn. Every linear transformation T ∈ L(X,X) can be described
by its action on a basis. Choosing a basis, allows T to be repre-
sented as matrix multiplication (in F ). Using the “right” bases gives
T as a diagonal matrix greatly simplifying everything.
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Eigenvalues, II

Eigenvalue notes from Luke

Eigenvalues and differential equations notes from
Celes

(Go to TOC)
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26. Vector Spaces & Matrices

Background . Let X be a vector space over the field F and
let dim(X) = n <∞.

Then X ∼= Fn

Then, given a basis BX , each x ∈ X can be written as
x = [α1, . . . , αn]BX

in “basis order” (row or col format a)

Let T ∈ L(X,Y ). T ’s action on BX , i.e., the set T (BX),
completely determines T (x) for any x ∈ X.

Let BY be a basis for Y. Then there is a matrix T based
on BX and BY , so that

y = T (x) =




a11 a12 · · · a1n

. . . . . . . . . . . . . . . . . . . .

am1 am2 · · · amn



×




α1
...
αn





a “Column” and “row” vectors are artifices to aid the arithmetic.
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Examples andT = [T ]

Example Set 28

1. Let X = R2. Then [1, 2]{[1,0],[0,1]} = [−1, 1]{[1,1],[2,3]}.

2. Let X = P2 with the “standard basis” {ei = ti}.
x = [1, 2, 3] = 1 + 2t+ 3t2

3. Let D : P3 → P3 be differentiation. Then, with the
standard basis {1, t, t2, t3},

D

([ α
β
γ
δ

])
=

[
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

]
·
[ α

β
γ
δ

]
=

[
β
2γ
3δ
0

]

Definition 40 (The matrix of T ) If BX ={ej} and BY ={fi},
then T = [aij ] where aij = proji(T (ej)) with proji : Y → Y

being the projection on the ith coordinate of Y w.r.t. BY .
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The Matrix of T

Example Set 29 Let T ∈ L(R2,R2) given by T ([x1, x2])
= [x1 − x2, x1 + x2].

1. Use the standard basis for both.Then T =
[

+1 −1
+1 +1

]
.

2. Use BX = {[1, 1], [2, 3]} and BY = {[1, 2], [4, 3]}. Then

T =
[

12

5
− 2

5

37

5
− 2

5

]
.

—We now return you to the regularly scheduled program.—

Definition 41 (Coordinate representation) Let x ∈ X and
let B = {e1, . . . , en} be a basis for X. Then there are unique
scalars ξj such that x =

∑
j ξj . Write x in coordinate

representation with respect to the basis B as x =

[
ξ1

...
ξn

]

B

.
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The Transition Matrix

Example 30 Let B = {e1, . . . , e4} be the standard basis for
R4. Set B∗ = {[1, 2, 1, 0], [3, 3, 3, 0], [2,−10, 0, 0], [−2, 1,−6, 2]}.
Then, for x ∈ R4, define TB∗→B by [ e1 ... e4 ] so

[x]B =

[ 1 3 2 −2
2 3 −10 1
1 3 0 −6
0 0 0 2

]
× [x]B∗

Hence

[x]B∗ =

[ 1 3 2 −2
2 3 −10 1
1 3 0 −6
0 0 0 2

]−1

× [x]B =




5 1 −6 − 27

2

− 5

3
− 1

3

7

3

11

2

1

2
0 − 1

2
−1

0 0 0 1

2



× [x]B

Query : How is a vector in B1 coordinates expressed in B2

coordinates? Can of cake: use

TB1→B2
= T −1

B2→B × TB1→B

(Go to TOC)
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27. Rank of a Matrix

Theorem 57 Let T ∈ L(X,Y ) where dim(X) = n and
dim(Y ) = m. The ρ(T ) = r iff there are bases BX and BY

such that

T =





r︷ ︸︸ ︷
1 0 ... 0
0 1 ... 0

. . . . .
0 ... 0 1

0 ... 0
0

. . .
0 ... 0

0 ... 0
0

. . .
0 ... 0

0 ... 0
0

. . .
0 ... 0





︸ ︷︷ ︸






m = dim(Y )

n=dim(X)
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The Rank Theorem Examples

Example Set 31

1. Consider T ∈ L(R3 → R2). Then T must have one of
the forms below (assuming proper choice of bases):

[ 1 0 0
0 1 0 ] , [ 1 0 0

0 0 0 ] , [ 0 0 0
0 0 0 ]

Explain why.

2. Consider T ∈ L(R3 → R4). Then T must have one of
the forms below (assuming proper choice of bases):

[
1 0 0
0 1 0
0 0 1
0 0 0

]
,

[
1 0 0
0 1 0
0 0 0
0 0 0

]
,

[
1 0 0
0 0 0
0 0 0
0 0 0

]
,

[
0 0 0
0 0 0
0 0 0
0 0 0

]

Explain why.
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The Rank Theorem Proof
Theorem 57 Let T ∈ L(X,Y ). Then ρ(T ) = r iff T =

[
Id 0
0 0

]
.

Pf. (⇔) Let r = ρ(T ). Choose a basis for N(T ) of n − r vectors

listing it as {er+1, er+2, . . . , en}. Extend this basis to all of X as

BX = {e1, e2, . . . , er, er+1, . . . , en}. Calculate F = {T (ei) | i = 1..r}
which forms a basis for R(T ). (Thm 3.4.25) Extend F to a basis BY

by adding vectors {fr+1, . . . , fm}. (Thm 3.3.44) Then

f1 = Te1 = (1)f1 + (0)f2 + · · · + (0)fr + (0)fr+1 + · · · + (0)fm

f2 = Te2 = (0)f1 + (1)f2 + · · · + (0)fr + (0)fr+1 + · · · + (0)fm

. . .

fr = Ter = (0)f1 + (0)f2 + · · · + (1)fr + (0)fr+1 + · · · + (0)fm

0 = Ter+1 = (0)f1 + (0)f2 + · · · + (0)fr + (0)fr+1 + · · · + (0)fm

. . .

0 = Ten = (0)f1 + (0)f2 + · · · + (0)fr + (0)fr+1 + · · · + (0)fm

(Go to TOC)
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28. Rank & Algebra of Matrices

Definition 42 Let A ∈ Mmn be the matrix of A ∈ L(X,Y )
w.r.t. the bases BX and BY . The rank of A is the largest
number of linearly independent columns in A.

Theorem 58 Let A,B, and C be comparable/conformal
matrices and let α, β ∈ F. Then

1. (A + B)C = AC + BC

2. A(B + C) = AB + AC

3. A(BC) = (AB)C

4. (α+ β)A = αA + βA

5. α(A + B) = αA + αB

6. (αA)(βB) = (αβ)(AB)

7. A + B = B + A

8. (A + B) + C = A + (B + C)
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Algebra of Matrices

Theorem 59

1. The zero matrix 0 = [0ij ] represents the zero transform
0(x) = 0 for every basis.

2. The identity matrix I = [δij ] represents the identity
transform I(x) = x for every basis.

3. The matrix A is nonsingular iff the transform A is
nonsingular.

4. If A is nonsingular, then A−1 is unique.

5. If An and Bn are nonsingular, then (AB)−1 = B−1A−1.

6. rank(An) = n if and only if (Anx = 0 ⇔ x = 0).

7. For A ∈ Mn, set Am = A · A · · · · · A︸ ︷︷ ︸
m

& A−m = (A−1)m.
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Partitioned Vectors & Matrices
Partitioning a vector or matrix can be very useful and is
natural in direct sums. E.g.,




x1

x2

x3



 ,




a11 a12 b11

a21 a22 b21

c11 c12 d11



 ,
[
A11 A12 A11

A21 A22 A21

]

Theorem 60 Let P ∈ L(X,X) be a projection and
dim(X) = n. Then there is a basis for X = R(P ) ⊕ N(P ) s.t.

P =





1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
· · · · · · · · · · ·
0 0 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
· · · · · · · · · · .
0 0 · · · 0 0 · · · 0





(Go to TOC)
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29. Similarity & Equivalence

Ab hinc: X and Y are vector spaces over F with dimX = n
and dim(Y ) = m.

Theorem 61 Let BX = {e1, . . . , en} be a basis for X and let
P = [pij ] be an n× n matrix. Set e′k =

∑
j pjkej . Then

B ′
X = {e′1, . . . , e′n} is a basis for X iff P is nonsingular.

Pf. Calculation based on the linear independence of BX .

Definition 43 Let P be the matrix of Thm 61, then P is the
matrix of B ′

X w.r.t BX .

Theorem 62 P is the matrix of B ′
X w.r.t BX iff P−1 is the

matrix of BX w.r.t B ′
X .

Pf. Exercise.

Intro to Linear Algebra MAT 5230 – p. 104/130



Similarity of Matrices

Theorem 63 Let P be the matrix of B ′
X w.r.t BX and Q be

the matrix of B ′′
X w.r.t B ′

X . Then PQ is the matrix of B ′′
X w.r.t

BX .

Pf. Exercise.

Theorem 64 Let P be the matrix of B ′
X w.r.t BX and let

x ∈ X be x in BX coordinates. Then Px′ = x gives x in B ′
X

coordinates.
Pf. Exercise.

x = Px′ A−−−→ y = Ax
xP

yQ

x′ A′

−−−→ y′ = Qy

= QAPx′

(Go to TOC)
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30. Equivalence of Transformations

Theorem 65 Let A ∈ L(X,Y ) where

A has matrices ABX→BY
, and A′

B′

X
→B′

Y

, resp.

P is the matrix of B′
X w.r.t. BX and Q of B′

Y w.r.t. BY

Then A′ = QAP.

Pf.
Ae′i = A ·

∑

k

pkiek =
∑

k

pkiAek =
∑

k

pki

(
∑

l

alkfl

)

=
∑

k

pki




∑

l

alk

[∑

j

qjlf
′
j

]


 =
∑

k

∑

l

∑

j

qjlalkpki · f ′j

Whence
a′ij =

∑

l

∑

k

qilalkpkj
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Definition of Equivalence

Definition 44 Two m× n matrices A and A′ are equivalent
iff there are nonsingular square matrices Pn and Qm such
that A′ = Qm · A · Pn. Equivalence is written as A′ ∼ A.

Theorem 66 Matrix equivalence is an equivalence relation.
I.e., ∼ is reflexive, symmetric, and transitive.

Pf. Exercise.

Theorem 67 Let A and B ∈ Mm,n. Then

1. A is equivalent to
[
Ir 0

0 0

]
where r = rank(A).

2. A ∼ B iff rank(A) = rank(B).
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Equivalence Example

Example 32 Consider A ∈ L(R4, R
5).

Suppose A =

2

6

6

6

6

6

6

6

4

7 −9 5 −4

7 3 −8 −5

4 9 5 6

11 0 10 2

0 12 −13 −1

3

7

7

7

7

7

7

7

5

and A′ =

2

6

6

6

6

6

6

6

4

1 13 0 12

−21 −31 8 6

13 14 −7 15

−1 21 3 0

11 −46 −10 −21

3

7

7

7

7

7

7

7

5

.

Then P =

2

6

6

6

6

6

4

−1 1 1 0

1 0 −1 −1

1 1 −1 0

0 0 1 0

3

7

7

7

7

7

5

and Q =

2

6

6

6

6

6

6

6

4

−1 0 −1 1 −1

0 1 −1 −1 0

1 −1 1 −1 −1

1 −1 0 1 1

−1 0 0 −1 1

3

7

7

7

7

7

7

7

5

.

1. Show that A′ = QAP.

2. Find the matrix

"

Ir 0

0 0

#

equivalent to both A and A′.
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31. Determinants: “Work Day”

Exercise . Use an undergraduate text on Linear Algebra to:

1. Define the determinant of a matrix.

2. List the main properties/theorems on determinants.

3. Choose the five most important properties.

4. Give a numerical example demonstrating each
important property listed.

5. Discuss the relation between determinant of a matrix
and nonsingularity of a linear transformation.

(Go to TOC)
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32. Determinants & Invariants

Recall the following
Theorem 68 Let A ∈ L(X,X).

|A| 6= 0 iff A is nonsingular

|A ·B| = |A| · |B|
|A−1| = |A|−1

|αA| = αn|A| where n = dim(A)

|A| = 0 iff
A has a row/column of zeros
A has two identical rows/columns
A has a row/column that is a linear combination of
other rows/columns
Ax = b has nonunique solutions
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Eigenvalue & Eigenvector

Definition 45 Let A ∈ L(X,X). A scalar λ such that there
is a nonzero x ∈ X for which Ax = λx is an eigenvalue and
the corresponding x is an eigenvector.

Definition 46 The polynomial p(λ) = |A− λI| is the
characteristic polynomial of A.

Theorem 69 (Cayley-Hamilton) Let A ∈ L(X,X). Then
p(A) = 0. (NB: Also p(0) =

∏
λi. See Zhou a )

Definition 47 Let A ∈ L(X,X). Then the subspace Y is an
invariant subspace under A iff A(Y ) ⊆ Y ; i.e., ∀y ∈ Y, we
have Ay ∈ Y.

Definition 48 Set Nλ(A) = Nλ = N(A− λI).

a “Intro. to Symmetric Polynomials & Symmetric Functions”
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Reduced Linear Transformation

Theorem 70 Let A ∈ L(X,X). Then X, R(A), N(A), and
{0} are all invariant subspaces under A.

Example 33 Let A : R2 → R2 be given by [ 1 2
2 4 ] . Then {0}.

N(A) = 〈
[

2
−1

]
〉, R(A) = 〈[ 1

2 ]〉, and R2 are all invariant.

Example 34 (Exercise.) Let B :R3→R3 be given by
[

1 2 1
2 4 1
1 2 0

]
.

Then {0}, N(B) = 〈? 〉, R(B) = 〈?〉, and R3 are all invariant.

Theorem 71 Let λ be an eigenvalue of A ∈ L(X,X). Then
Nλ is invariant. (Exercise.)

Definition 49 Let X = Y ⊕ Z be such that both Y and Z
are invariant subspaces under A ∈ L(X,X). Then A is

reduced by Y and Z and A can take form
[

A1 0
0 A2

]
.

(Go to TOC)
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33. Eigenvalues & Diagonalization

Ab hinc: X is an n-dimensional vector space over F.

Theorem 72 Let {λi | i = 1..p} be a set of distinct eigen-
values of A ∈ L(X,X) with corresponding nonzero eigen-
vectors E = {e′i | i = 1..p}. Then E is linearly independent.

Pf. Assume E is dependent. Choose the smallest set of
vectors from E such that 0 =

∑ r
i=1 αie

′
i (reordering the r ≤ p

vectors as needed). Then 0=A(0) =A
(∑ r

i=1 αie
′
i

)
which

gives 0 =
∑ r

i=1(λiαie
′
i)

(∗). Now 0 = λr0 = λr

∑ r
i=1 αie

′
i, or

0 =
∑ r

i=1 λrαie
′
i

(∗∗). Subtract (∗) from (∗∗) to obtain
0 =

∑r−1
i=1 (λr − λi)αie

′
i which contradicts r being minimal.

Hence E is linearly independent.
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“Eigenbasis”

Theorem 73 If A ∈ L(X,X) has n distinct eigenvalues,
then there is a basis of eigenvectors Be = {e′i | i = 1..p} such
that the matrix of A is diag(λ1, . . . , λn).

Pf. Exercise.

Corollary 74 If A ∈ L(X,X) has n distinct eigenvalues,
then every matrix for A is similar to a diagonal matrix.

Pf. Collect the eigenvectors E = {e′i | i = 1..n}. Set
P = [e′1, . . . , e

′
n]. Then diag(λ1, . . . , λn) = P−1AP.

Example 35 See the Maple worksheet. (To see what happens

without a “cooked” example, enter the following in Maple: with(LinearAlgebra):

A := RandomMatrix(5,5, generator=rand(-3..3)); Eigenvectors(A);)

(Go to TOC)
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34. “Eigen-Basis” Examples

Example 36

1. Let A =
[

1 0 0
1 0 0
0 0 1

]
∈ L(R3,R3). Then p(λ) = λ3 − 2λ2 + λ

(and m(λ) = λ2 − λ) which indicates that A has eigen-
values: 0, 1, 1. The corresponding eigenvectors come

from Nλ =N(A− λI). So N0 =〈
[

0
1
0

]
〉 and N1 =〈

[
1
1
0

]
,
[

0
0
1

]
〉.

(Found by solving
[

1−λ 0 0
1 −λ 0
0 0 1−λ

] [
x1

x2

x3

]
= 0 with λ = 0 and

1, respectively.)
(a) Define P and find P−1.

(b) Calculate the diagonal matrix P−1AP without using
matrix multiplication.
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“Eigen-Basis” Examples, II

Example 37

1. Let B =
[

1 1 2
1 1 2
1 0 1

]
∈ L(R3,R3). Then p(λ) = λ3 − 3λ2 (and

m(λ) = λ3 − 3λ2) which indicates that B has eigenval-
ues: 0, 0, and 3. The corresponding eigenvectors come

from Nλ = N(B − λI). So N0 = 〈
[
−1
−1
1

]
〉 and N3 = 〈

[
2
2
1

]
〉.

(Found by solving
[

1−λ 1 2
1 1−λ 2
1 0 1−λ

] [
x1

x2

x3

]
= 0 with λ = 0,

and 3, respectively.)
(a) Explain why P (and so P−1) doesn’t exist.
(b) Can B be diagonalized? Why or why not?

(Solution.)

(Go to TOC)
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35. Geometric Multiplicity

Definition 50 Let λ be an eigenvalue of A ∈ L(X,X). Then

the algebraic multiplicity of λ is the multiplicity as a root
of the characteristic polynomial p(λ);

the geometric multiplicity of λ is the dimension of the
nullspace Nλ = N(A− λI).

Example 38 Let X = R3. Each matrix below has character-
istic polynomial p(λ) = −(λ− 2)3.




2 0 0

0 2 0

0 0 2








2 1 0

0 2 0

0 0 2








2 1 0

0 2 1

0 0 2





alg = 3, geo = 3 alg = 3, geo = 2 alg = 3, geo = 1

iev = {e1, e2, e3} iev = {e1, e3} iev = {e1}
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Reduction Partition

Theorem 75 Let X = X1 ⊕X2 be a direct sum that reduces
A ∈ L(X,X); i.e., A is invariant on X1 and X2. Then there is
a basis B for X such that

AB =

[
A1 0

0 A2

]

Theorem 76 Let X = X1 ⊕ · · · ⊕Xp be a direct sum that
reduces A ∈ L(X,X); i.e., Ak = A|Xk

is invariant on Xk for
k = 1..p. Then there is a basis B for X such that

AB =





A1 0 . . . 0

0 A2 . . . 0
...

... . . . ...
0 0 . . . Ap




and |AB| =

p∏

k=1

|Ak|
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Minimal Polynomial

Example 39 If A ∈ L(X,X) has n distinct eigenvalues in F ,
then X = Nλ1

⊕ · · · ⊕ Nλn
and A = diag(λ1, . . . , λn).

Definition 51 Let A ∈ L(X,X). Then there is a monic
polynomial m(λ), the minimal polynomial, such that

m(A) = 0

any polynomial m′ with m′(A) = 0 has deg(m)≤deg(m′)

Example 40 The three matrices of Example 38 have


2 0 0

0 2 0

0 0 2








2 1 0

0 2 0

0 0 2








2 1 0

0 2 1

0 0 2





m(λ)=(λ− 2) m(λ)=(λ− 2)2 m(λ)=(λ− 2)3
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Properties of the Minimal Polynomial

Theorem 77 The minimal polynomial m(λ) is unique.

Theorem 78 Let q(λ) be a polynomial such that q(A) = 0.
Then m(λ)| q(λ).

Corollary 79 The minimal polynomial divides the charac-
teristic polynomial; i.e., m(λ)| p(λ).

Theorem 80 The characteristic polynomial divides a power
of the minimal polynomial: p(λ)

∣∣ [m(λ)]n where n=dim(X).

Corollary 81 m(λ)
∣∣ p(λ)

∣∣ [m(λ)]n.

Proofs . Exercises.

(Go to TOC)
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36. Jordan Canonical Form

Definition 52 Let A ∈ L(X,X). If there is a power k such
that Ak = 0, but Ak−1 6= 0, then A is nilpotent of index k.

NB: For a nilpotent matrix A of index k, mA(λ) = λk.

Definition 53 Define Nk ∈ Mk×k to be

Nk =




0 1 0 ... 0
0 0 1 ... 0
... ... . .. ...
0 0 ... 0 1
0 0 ... 0 0





Then Nk is nilpotent of index k.

Definition 54 Define Jk(λi) = Nk + λiI. The matrix Jk(λi) is
a Jordan block.
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Jordan Blocks

Theorem 82 Let Jk(λi) be the Jordan block matrix of size k
(with eigenvalue λi). Then

p(λ) = (λ− λi)
k

m(λ) = (λ− λi)
k

Pf. Consider Jk(λi) − λI. For λ = λi, we see

Jk(λi) − λiI = Nk

which is nilpotent of index k. Hence p(λ) = (λ− λi)
k. Since

m | p and no lower power of Nk than k gives 0, it follows that
we also have m(λ) = (λ− λi)

k.
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Jordan Form

Theorem 83 Let A ∈ L(X,X) with

p(λ)=
r∏

i=1

(λ− λi)
ni and m(λ)=

r∏

i=1

(λ− λi)
mi

Then there is a block-diagonal matrix for A with blocks
J(λi). For each λi the blocks J(λi) have the properties:

1. There is at least one block Jmi
(λi); all others have

order ≤ mi.

2. The sum of the orders of the blocks for J(λi) is ni.

3. The number of blocks J(λi) equals the geometric
multiplicity of λi.

4. A uniquely determines the number of blocks J(λi).
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JCF Example, I

Example 41 Let A =

[
1 2 1 0
0 3 1 0
1 1 2 0
0 0 0 1

]
. (A is not diagonalizable.)

First p(λ) = (4 − λ)(1 − λ)3. Hence, m(λ) = (4 − λ)(1 − λ)k

where k = 1, 2, or 3. Testing, we determine that
m(λ) = (4 − λ)(1 − λ)2. Thus there are Jordan blocks J1(4)
and J2(1) from the factor powers in m(λ). Since the sum of
the block’s indices must be 4, the last block is J1(2). We
have determined that

JCF (A) = diag(J1(4), J2(1), J1(1)) =

[
4 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

]
.

Now we compute the transition matrix P that converts
JCF (A) = P−1AP. The first eigenvalue 4 has one
independent eigenvector: N4 = 〈[1, 1, 1, 0]T〉. The second
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JCF Example, II

Example 41 (continued) eigenvalue 1 has geometric
multiplicity 2; i.e., dim(N1) = 2, and has only 2 independent
eigenvectors. N1 = 〈[0, 0, 0, 1]T, [1, 1,−2, 0]T〉. We need an-
other independent vector for P. Set N1,2 = N

(
(A− 1I)2

)

= 〈[0, 0, 0, 1]T, [−3, 0, 1, 0]T, [−5, 1, 0, 0]T〉. Let Nλ = A− λI,
then x1, x2 = N1x1, . . . , xj = N1xj−1 can form an inde-
pendent chain of vectors. Try x1 = [−5, 1, 0, 0]T, then
x2 = N1x1 = [2, 2,−4, 0]T and x3 = N1x2 = 0. We have 4
independent vectors with which to construct P.

P = [N4[1],N1[1], x2, x1] =

[
1 0 2 −5
1 0 2 1
1 0 −4 0
0 1 0 0

]
and

[
4 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

]
= P−1AP

(Go to TOC)
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37. JCF Examples

We will consider a 3× 3 matrix A over R; i.e., A ∈ L(R3,R3).

Example 42 Let A =
[

4 4 1
0 2 4
0 0 2

]
. The characteristic polynomial

is p(λ) = (4 − λ)(2 − λ)2. The minimal polynomial is found to
be the same: m(λ) = (4 − λ)(2 − λ)2. We can directly write

the Jordan canonical form JCF (A) =
[

4 0 0
0 2 1
0 0 2

]
. (Explain why.)

We construct the transition matrix P from eigen- and
generalized eigenvectors. Set N4 = (A− 4I). The nullspace
of N4 is 〈[1, 0, 0]T〉. Set v1 = [1, 0, 0]T. Now consider
N2 = (A− 2I). The nullspace of N2 is 〈[−2, 1, 0]T〉. This
space is “too small,” since the algebraic multiplicity of λ = 2

is 2. Consider N2,2 = (A− 2I)2. The nullspace of N2,2 is
〈[−2, 1, 0]T, [−9/2, 0, 1]T〉. Set x2 = [−9/2, 0, 1]T. This choice
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JCF Examples, II

Example 42 (continued) gives x2 ∈ N(N2,2) − N(N2), and
then define x1 = N2 x2 = [−8, 4, 0]T. Let P be the matrix
[v1, x1, x2]. Then

P =




1 −8 −9/2

0 4 0

0 0 1



 and P−1 =




1 2 9/2

0 1/4 0

0 0 1





Whence

JCF (A) = P−1AP =




4 0 0

0 2 1

0 0 2



 .
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JCF Finite Field Example

We will consider the same 3 × 3 matrix A, but now over Z5;
i.e., A ∈ L(Z3

5,Z
3
5). Proceed as before, but calculate in Z5.

Example 43 Let A =
[

4 4 1
0 2 4
0 0 2

]
. The characteristic polynomial

is p(λ) = (4 − λ)(2 − λ)2. The minimal polynomial is found to
be the same: m(λ) = (4 − λ)(2 − λ)2. We can directly write

the Jordan canonical form JCF (A) =
[

4 0 0
0 2 1
0 0 2

]
. (Explain why.)

We again construct the transition matrix P from eigen- and
generalized eigenvectors. Set N4 = (A− 4I) = (A+ 1I)

mod 5. The nullspace of N4 is 〈[1, 0, 0]T〉. Set v1 = [1, 0, 0]T.
Now consider N2 = (A− 2I) = (A+ 3I) mod 5. The null-
space of N2 is 〈[3, 1, 0]T〉. This space is “too small,” since the
algebraic multiplicity of λ = 2 is 2.
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JCF Finite Field Example, II

Example 43 (continued) Consider N2,2 = (A− 2I)2

= (A+ 3I)2 mod 5 =
[

4 3 3
0 0 0
0 0 0

]
. The nullspace of N2,2 is

〈[3, 1, 0]T, [3, 0, 1]T〉. Set x2 = [3, 0, 1]T as this choice gives
x2 ∈ N(N2,2)−N(N2), and then define x1 = N2 x2 = [2, 4, 0]T.
Let P be the matrix [v1, x1, x2]. Then

P =




1 2 3

0 4 0

0 0 1



 and P−1 =




1 2 2

0 4 0

0 0 1





Whence

JCF (A) = P−1AP =




4 40 25

0 32 16

0 0 2



 =




4 0 0

0 2 1

0 0 2



 mod 5.

Intro to Linear Algebra MAT 5230 – p. 129/130



JCF Exercise

Exercise . Set A =





0 −1 0 2

−1 0 0 2

0 0 1 0

−1 1 0 1




.

Find

1. p(λ)

2. m(λ)

3. the transition matrix P

4. JCF (A)

THE END
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