Intro to Linear Algebra MAT 5230

Wm C Bauldry Autumn Semester, 2005

Intro to Linear Algebra MAT 5230 – p. 1/13

Intro to Linear Algebra MAT 5230 – p. 2/13

Table of Contents

- 1. Algebraic Structures
- 2. Field Properties
- 3. $\$3.1 \rightarrow 3.3$ of our text
- 4. Vector Space Properties
- 5. Homomorphisms
- 6. (a) Subspace
 - (b) Subspace Graphs
- 7. Operations on Subspaces
- 8. Linear In/Dependence

- Linear Independence, Spanning, and Basis
- 10. Basis and Dimension, I
- 11. Basis and Dimension, II
- 12. Basis and Direct Sum; Intro to Linear Transformations
- 13. $\Re(T)$ and $\Re(T)$
- 14. (a) Dimension Theorem
 - (b) Linear Transformation Project

Table of Contents

- 15. (a) Rank, Nullity; Inverses
 - (b) Linear Transformation Project "Solution"
- 16. Inverses; TransformationAlgebras
- 17. Transformation Algebras, II
- 18. Linear Functionals
- 19. Linear Functionals, II
- 20. Algebraic Transpose
- 21. Bilinear Functionals
- 22. Quadratic Forms & Inner Products

- 23. Inner Product Examples
- 24. Projections
- 25. Eigenvalues
- 26. Vector Spaces & Matrices
- 27. Rank of a Matrix
- 28. Rank&Algebra of Matrices
- 29. Equivalence & Similarity
- 30. Equivalence of Transformations
- 31. Determinants: "Work Day"

Table of Contents

- 32. Determinants & Invariants
- 33. Eigenvectors & Diagonalization
- 34. "Eigen-basis" Examples

- 35. Geometric Multiplicity
- 36. Jordan Canonical Form
- 37. JCF Examples

1. Algebraic Structures

Definition 1 A Group is a pair $\{X; \cdot\}$ such that

- 1. " \cdot " is closed on X.
- 2. ":" is associative on X.
- 3. There is an identity $e \in X$ (w.r.t. ".").
- 4. Every element $a \in X$ has an inverse a^{-1} (w.r.t. ".").

Definition 2 A Ring is a triple $\{X; +, \cdot\}$ such that

- 1. $\{X;+\}$ is an Abelian group.
- 2. $\{X; \cdot\}$ is a semigroup (lacks identity and inverses).
- 3. "." distributes over "+".

Algebraic Structures

Definition 3 A Field is a triple $\{X; +, \cdot\}$ such that

- 1. $\{X; +, \cdot\}$ is a ring.
- 2. $\{X^{\#}; \cdot\}$ is an Abelian group where $X^{\#} = X \{0\}$.

Definition 4 A Vector Space is an Abelian group $\{X;+\}$ over a field $\{F;+,\cdot\}$ with a scalar product $F \times X \to X$. For $\alpha, \beta \in F$ and $x, y \in X$,

- 1. $\alpha(x+y) = \alpha x + \alpha y$
- **2.** $(\alpha + \beta)x = \alpha x + \beta x$
- **3.** $(\alpha\beta)x = \alpha(\beta x)$
- **4.** 1x = x

Field

Definition 3 (Field) Let $F \neq \emptyset$ be a set with addition "+": $X \times X \to X$ and multiplication "·": $F \times X \to X$. Then $\{F; +, \cdot\}$ with the operations forms a field if the following axioms are satisfied: 1. $x+y=y+x, x \cdot y=y \cdot x$ commutative laws 2. x + (y + z) = (x + y) + z, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ associative laws 3. \exists unique element 0 satisfying 0 + x = x additive identity 4. To each x, \exists a unique -x so that x + (-x) = 0 additive inverse There is a unique element 1 satisfying $1 \cdot x = x$ mult. identity 5. 6. To each $x \neq 0$, \exists a unique x^{-1} so that $x \cdot x^{-1} = 1$ mult. inverse "." over "+" distributive law 7. $x \cdot (y+z) = x \cdot y + x \cdot z$

Examples of Fields

- 1. \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields.
- 2. \mathbb{Z} is not a field. (Why?)
- 3. Let p be a prime. Then \mathbb{Z}_p is a p-element field.
- 4. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.
- 5. $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ is *not* a field. (*Why?*)
- 6. $\mathbb{Q}[\sqrt[3]{3}] = \{a + b\sqrt[3]{3} + c\sqrt[3]{3^2} \mid a, b, c \in \mathbb{Q}\}$ is a field.
- 7. $\mathbb{Z}_p[i]$, p is prime, is a field (with p^2 elements).

Vector Space

Definition 4 (Vector Space) Let $X \neq \emptyset$ be a set (vectors) and F be a field (scalars) with vector addition "+": $X \times X \rightarrow X$ and scalar multiplication " \cdot ": $F \times X \rightarrow X$. Then X and F with the operations forms a vector space (or linear space), "X is a vector space over F," if the following axioms are satisfied:

commutative law 1. x + y = y + x2. x + (y + z) = (x + y) + zassociative law 3. There is a unique vector 0 satisfying 0 + x = x 'zero vector,' identity 4. $\alpha(x+y) = \alpha x + \alpha y$ scalar "." over vector "+" distributive law 5. $(\alpha + \beta)x = \alpha x + \beta x$ scalar "+" over scalar "." distributive law **6.** $(\alpha\beta)x = \alpha(\beta x)$ scalar homogeneity scalar-vector additive identity relation (*implied by 5.*) **7.** 0x = 0scalar-vector multiplicative identity relation. 8. 1x = x

Examples of Vector Spaces

- 1. Let $n \in \mathbb{Z}^+$. Then \mathbb{Q}^n , \mathbb{R}^n , and \mathbb{C}^n are vector spaces.
- 2. Let $n \in \mathbb{Z}^+$. Then \mathbb{P}^n , the polynomials (real or complex) of degree less than or equal to n, forms a vector space.
- 3. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is a vector space.
- 4. Let *F* be a field and $n \in \mathbb{Z}^+$. Then F^n is a vector space.
- 5. Let $M_{m \times n}$ be the $m \times n$ matrices with entries in a field F with componentwise addition and scalar multiplication.
- 6. Let $K \subseteq \mathbb{R}$ be a closed interval. Then C(K), the continuous real-valued functions on K form a vector space.
- 7. Let $O \subseteq \mathbb{R}$ be an open interval. Then $C^1(O)$, the continuously differentiable real-valued functions on O, form a vector space.

Homomorphisms

Definition 5 (Group Homomorphism) Let $\{X; +_X\}$ and $\{Y; +_Y\}$ be two groups with $\rho : X \to Y$. Then ρ is a homomorpism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$

Definition 6 (Ring Homomorphism) Let $\{X; +_X, \cdot_X\}$ and $\{Y; +_Y, \cdot_Y\}$ be two rings with $\rho : X \to Y$. Then ρ is a homomorpism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$
$$\rho(x_1 \cdot x_2) = \rho(x_1) \cdot \rho(x_2)$$

Vector Space Homomorphism

Definition 7 (Linear Transformation) Let X and Y be vector spaces over the same field F. Then the relation $\rho: X \to Y$ is a linear transformation if and only if for every $\alpha \in F$ and $x_1, x_2 \in X$, it follows that:

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2) \tag{1}$$

$$\rho(\alpha \cdot x_1) = \alpha \cdot \rho(x_1) \tag{2}$$

Linear Transformation

$$\begin{array}{ccc} [x_1, x_2] & \xrightarrow{+} & x_1 + x_2 \\ \rho \downarrow & & \rho \downarrow \\ [\rho(x_1), \rho(x_2)] & \xrightarrow{+} & \rho(x_1 + x_2) = \\ & \rho(x_1) + \rho(x_2) \end{array}$$

$$\begin{array}{cccc} [\alpha, x_1] & \xrightarrow{\cdot} & \alpha \cdot x_1 \\ \rho \downarrow & & \rho \downarrow \\ [\alpha, \rho(x_1)] & \xrightarrow{\cdot} & \rho(\alpha \cdot x_1) = \\ & \alpha \cdot \rho(x_1) \end{array}$$

(Go to TOC)

(1)

(2)

2. Properties of Finite Fields

Theorem 1 \mathbb{Z}_p is a field if and only if p is prime.

Theorem 2 Let p be a prime and $n \in \mathbb{Z}^+$. Then there exists a finite field F with p^n elements.

Theorem 3 For any prime p and $n \in \mathbb{Z}^+$, there is (essentially) only one field with p^n elements. (The splitting field of $x^{p^n} - x$ over the field \mathbb{Z}_p .)

References

- Elementary Modern Algebra, R Thompson, Scott, Foresman, & Co.
- *Modern Algebra: A First Course*, H Hollister, Harper & Row.
- *Introduction to Modern Algebra*, H McCoy, Allyn and Bacon.
- Modern Algebra, F Ayers, Schaum's Outline Series, McGraw-Hill.
- *Basic Algebra I*, N Jacobson, Freeman.
- http://mathworld.wolfram.com/FiniteField.html
- http://www-math.cudenver.edu/~wcherowi/courses/finflds.html

4. Properties of Vector Spaces

Theorem 4 Let *X* be a vector space over the field *F*. Let $x, y, z \in X$ and $\alpha, \beta \in F$. Then

- 1. if $\alpha x = \alpha y$ and $\alpha \neq 0$, then x = y;
- 2. if $\alpha x = \beta x$ and $x \neq 0$, then $\alpha = \beta$;
- 3. *if* x + y = x + z, *then* y = z;
- **4.** $\alpha \cdot 0 = 0$;
- 5. $\alpha(x-y) = \alpha x \alpha y$ where $-y \stackrel{\Delta}{=} (-1) \cdot y$;
- 6. $(\alpha \beta)x = \alpha x \beta x;$
- 7. x + y = 0 implies that x = -y.

More Examples of Vector Spaces

Sequence Vector Spaces

- igstyle ${}^{igstyle{\mathbb{R}}^{\infty}}$ and ${}^{igstyle{\mathbb{C}}^{\infty}}$
- Finitely non-zero real (or complex) sequences
- Null real (or complex) sequences
- Bounded real (or complex) sequences
- Convergent real (or complex) sequences

Function Vector Spaces

- \square $\mathbb{P} = \{ polynomials with real (or complex) coefficients \}$
- $C([a,b]) = \{f \mid f : [a,b] \to \mathbb{R} \text{ is continuous} \} \text{ over } \mathbb{R}$

•
$$L_1([a,b]) = \{f \mid \int_a^b |f(t)| dt < \infty\}$$
 over \mathbb{R}

(Go to TOC)

5. Homomorphisms

Definition 5 (Group Homomorphism) Let $\{X; +_X\}$ and $\{Y; +_Y\}$ be two groups with $\rho : X \to Y$. Then ρ is a homomorpism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$

Definition 6 (Ring Homomorphism) Let $\{X; +_X, \cdot_X\}$ and $\{Y; +_Y, \cdot_Y\}$ be two rings with $\rho : X \to Y$. Then ρ is a homomorpism *iff*

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2)$$
$$\rho(x_1 \cdot x_2) = \rho(x_1) \cdot \rho(x_2)$$

Vector Space Homomorphism

Definition 7 (Linear Transformation) Let X and Y be vector spaces over the same field F. Then the relation $\rho: X \to Y$ is a linear transformation if and only if for every $\alpha \in F$ and $x_1, x_2 \in X$, it follows that:

$$\rho(x_1 + x_2) = \rho(x_1) + \rho(x_2) \tag{3}$$

$$\rho(\alpha \cdot x_1) = \alpha \cdot \rho(x_1) \tag{4}$$

Examples

- 1. Set $\phi : \mathbb{R}^2 \to \mathbb{R}^4$ by $\phi(x, y) = (x, 0, 0, y)$.
- 2. Set $\psi : \mathbb{R}^2 \to \mathbb{C}$ by $\psi(x, y) = x + i y$.

Linear Transformation

$$\begin{array}{ccc} [x_1, x_2] & \xrightarrow{+} & x_1 + x_2 \\ \rho \downarrow & & \rho \downarrow \\ [\rho(x_1), \rho(x_2)] & \xrightarrow{+} & \rho(x_1 + x_2) = \\ & \rho(x_1) + \rho(x_2) \end{array}$$

$$\begin{array}{cccc} [\alpha, x_1] & \xrightarrow{\cdot} & \alpha \cdot x_1 \\ \rho \downarrow & & \rho \downarrow \\ [\alpha, \rho(x_1)] & \xrightarrow{\cdot} & \rho(\alpha \cdot x_1) = \\ & \alpha \cdot \rho(x_1) \end{array}$$

(Go to TOC)

(1)

(2)

6. Subspace of a Vector Space

Definition 8 (Subspace) Let *X* be a vector space over *F* and let $\emptyset \neq V \subseteq X$. Then *V* is a subspace of *X* iff

1. $\forall u, v \in V$, we have $u + v \in V$ (closed under addition)

2. $\forall \alpha \in F, \forall u \in V, we have \alpha u \in V$ (closed under scalar mult.)

Theorem 5 A subspace of a vector space is itself a vector space. *Proof.* Let *V* be a subspace of *X*. *V* is closed under vector addition and scalar multiplication by definition. All remaining vector space properties — with the exception of $0 \in V$ — are inherited from *X*. Let $v \in V$ (because $V \neq \emptyset$). Since $0 \in F$, then $0v = 0 \in V$. Thus *V* is a vector space. \Box *Note.* Every vector space has at least 2 subspaces. What are they?

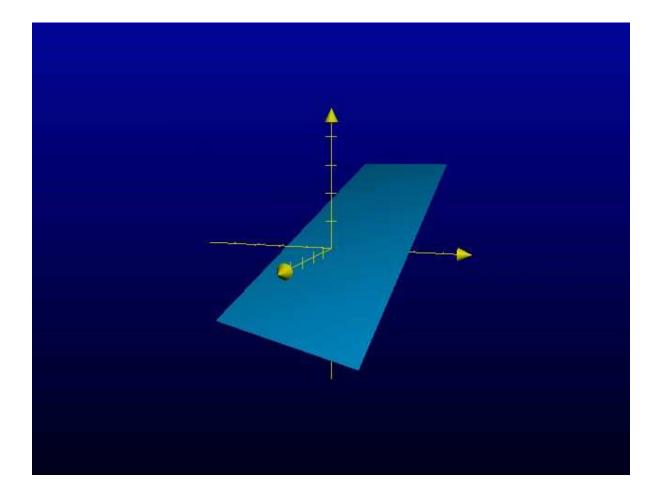
Examples of Subspaces

- $\{0\}$ and X are always subspaces of X
- \blacksquare \mathbb{R}^2 is a subspace^{*a*} of \mathbb{R}^3 , \mathbb{C}^2 is a subspace of \mathbb{C}^3 .
- For m < n, we have that \mathbb{R}^m is a subspace of \mathbb{R}^n
- For m < n, we have that \mathbb{P}^m is a subspace of \mathbb{P}^n
- 🥒 Is
 - $V_1 = \{(x, 1) | x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^2 ?
 - $V_2 = \{(x, y, x + y, 0) | x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^4 ?
 - ▶ $V_3 = \{(x, y, x + y + 2, 0) | x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^4 ?

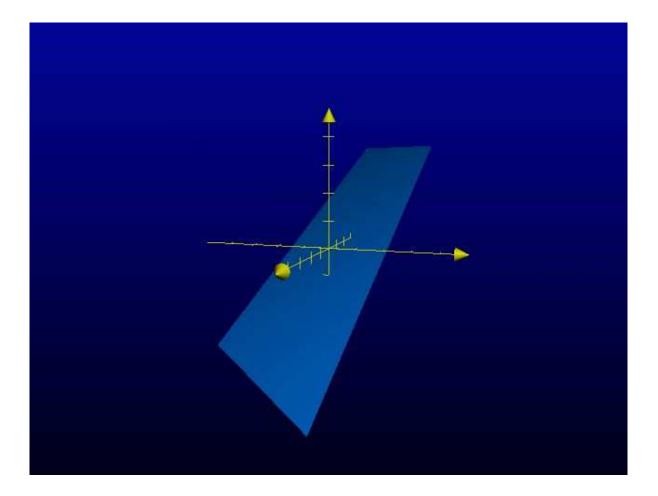
^{*a*} Thinking of \mathbb{R}^2 as a subset such as $\{(x, y, 0) | x, y \in \mathbb{R}\}$, &c., of \mathbb{R}^3 . Formally, \mathbb{R}^2 is isomorphic to a subspace of \mathbb{R}^3 .

(Go to TOC)

Is This a Subspace?



Is This a Subspace?



(Go to TOC)

7. Operations with Subspaces

Theorem 6 Let *X* be a vector space over *F* and let V_1 and V_2 be subspaces of *X*. Then $V = V_1 \cap V_2$ is a subspace.

Pf. (Exercise.)

Theorem 7 Let *X* be a vector space over *F* and let X_i for $i \in I$ be subspaces of *X* where *I* is some index set. Then $V = \bigcap_{i \in I} X_i$ is a subspace.

Pf. (Easy closure calculations.)

NB: Unions (usually) or complements of subspaces do not form new subspaces.

Direct Sum

Definition 9 (Direct Sum) Let $X_1, X_2, ..., X_r$ be subspaces of *X*. The set $X_1 + X_2 + \cdots + X_r$ forms the direct sum $X_1 \oplus X_2 \oplus \cdots \oplus X_r$ iff for every *x* in the sum, there is a unique set of $x_i \in X_i$ such that $x = \sum_{i=1}^r x_i$.

Theorem 8 $X_1 + X_2 = X_1 \oplus X_2$ if and only if $X_1 \cap X_2 = \{0\}$.

Pf. Based on: Let $0 \neq v \in X_1 \cap X_2$. Then v = v + 0 = 0 + v is two different ways to write v.

Note. $X_1 + X_2$ is a subspace; $X_1 \oplus X_2$ is a subspace that 'looks like' a direct product.

Subspaces of \mathbb{R}^2 and \mathbb{R}^3

Example 1 Set $X = \mathbb{R}^2$. Let X_1 be given by the line y = x and X_2 by the line y = -x. Then

 $\{0\} = X_1 \cap X_2 \subseteq X_1 \cup X_2 \subseteq X_1 + X_2 = X_1 \oplus X_2 = \mathbb{R}^2$ subsp \neg subsp subsp

Example 2 Set $X = \mathbb{R}^3$. The subspaces of \mathbb{R}^3 are:

- **9** {0}
- A line L through the origin.
- The direct sum of two distinct lines through the origin $L_1 \oplus L_2$ yields a plane.
- The direct sum of three distinct non-coplanar lines through the origin $L_1 \oplus L_2 \oplus L_3$ yields \mathbb{R}^3 .

(Go to TOC)

8. Linear Combinations

Note: From now on, α_i , etc., will be elements of the base field *F* and x_i, y_i , etc., will be vectors from the space *X*.

Definition 10 (Finite Linear Combination) Let $Y \subseteq X$. A vector $x \in X$ is a (finite) linear combination of vectors in Y iff there is a finite set of vectors $\{y_i\} \subseteq Y$ and scalars $\{\alpha_i\}$ such that

$$x = \sum_{i=1}^{n} \alpha_i \, y_i$$

Note: The sum is not required to be unique. (Unlike \oplus .)

Example 3 Let $Y = \{(1,0), (1,1), (0,1)\} \subset \mathbb{R}^2$. Then the vector x = (2,3) can be written as x = 2(1,0) + 3(0,1) or as x = 2(1,1) + 1(0,1) or as x = -1(1,0) + 3(1,1).

Generated Subspace & Span

Theorem 9 Let $\emptyset \neq Y \subseteq X$. Define

 $V(Y) \stackrel{\Delta}{=} \{ all \ linear \ combinations \ from \ Y \}.$

Then V(Y) is a subspace of X and is called the subspace generated by Y.

Definition 11 (Span) *Y* spans *X* if and only if V(Y) = X.

Example 4 Let $Y = \{(1,0), (1,1), (0,1)\}$. Then Y spans \mathbb{R}^2 . *(Exercise.)*

Example 5 Let $Z = \{(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\}$. Does the set Z span \mathbb{R}^3 ?

Dependence and Independence

Definition 12 (Linear Dependence) Let $\{x_1, x_2, ..., x_m\}$ be a nonempty subset of *X*. If there exists a set of scalars $\{\alpha_i\}$, not all zero, such that $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_m x_m = 0$, then $\{x_1, x_2, ..., x_m\}$ is linearly dependent.

Definition 13 (Linear Independence) *If the nonempty subset* $\{x_1, x_2, ..., x_m\}$ *of* X *is not linearly dependent, then* $\{x_1, x_2, ..., x_m\}$ *is* linearly independent.

Example 6 *Y* and *Z* from the previous examples are both linearly dependent.

Example 7 Let $W = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$. Then W is *linearly independent.*

More Examples

Example 8 Let $V = \{(1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)\}$. Is *V* linearly independent? Does *V* span \mathbb{R}^4 ?

Example 9 Let $U = \{(0, 0, 0), (1, 0, 0), (0, 1, 0)\}$. Is U linearly independent?

Example 10 Let $\mathcal{P} = \{1, x, x^2, x^3, ...\}$. Then $V(\mathcal{P}) = \mathbb{P}$, the set of all real polynomials; i.e., \mathcal{P} spans \mathbb{P} . Is \mathcal{P} linearly independent? Yes! But how do we show this? Consider

$$p(x) = \sum_{i=0}^{n} \alpha_i x_i = 0$$

and note that the only *n*th degree polynomial with n + 1 roots, is $p(x) \equiv 0$.

(Go to TOC)

9. Linear Independence

Theorem 10 (Uniqueness) Let $Y = \{x_1, x_2, ..., x_m\}$ be a linearly independent set of vectors. If $\sum_{i=1}^{m} \alpha_i x_i = \sum_{i=1}^{m} \beta_i x_i$, then $\alpha_i = \beta_i$ for i = 1..m. **Pf.** Simple calculation.

Theorem 11 A set *Y* is linearly dependent if and only if some vector $x \in Y$ can be written as a linear combination of other vectors in *Y*.

- Add any number of vectors to a dependent set, it will still be dependent.
- Add one vector to an independent set, it may or may not stay independent.

Infinite Example

Example 11 Let $\mathcal{P} = \{1, x, x^2, x^3, ...\}$. Then $V(\mathcal{P}) = \mathbb{P}$, the set of all real polynomials; i.e., \mathcal{P} spans \mathbb{P} . Is \mathcal{P} linearly independent? Yes! But how do we show this? Let $p(x) \in \mathbb{P}$. Then, for some n,

$$p(x) = \sum_{i=0}^{n} \alpha_i x_i = 0.$$

Note that the only *n*th degree polynomial with n + 1 roots, is $p(x) \equiv 0$. Hence all α_i are 0.

Unique Expression

Theorem 12 (Uniqueness of Expression) A finite nonempty set *Y* is linearly independent if and only if, for each nonzero $y \in V(Y)$, there exists a unique subset $\{x_1, \ldots, x_m\}$ of *Y* and a unique set of scalars $\{\alpha_1, \ldots, \alpha_m\}$ such that $y = \sum_{i=1}^m \alpha_i x_i$.

Assignment:

- 1. Prove Theorem 11
- 2. Prove Theorem 12

Theorem 13 *Y* is linearly independent if and only if $Z \subsetneq Y$ implies $V(Z) \neq V(Y)$.

Pf. Exercise.

Basis of a Vector Space

Definition 14 (Hamel basis) A (finite) set $Y \subseteq X$ is a Hamel basis (or just a basis) if and only if

1. *Y* is linearly independent

2. V(Y) = X

Id est, Y is a (finite) linearly independent spanning set.

Theorem 14 If Y is linearly independent, then Y is a basis for V(Y).

Pf. Exercise.

Note: The theorem *Every vector space has a basis* is a result of the *Axiom of Choice*.

(Go to TOC)

10. Basis of a Vector Space

Recall:

Definition 15 (Hamel Basis) A set $Y \subseteq X$ is a Hamel Basis (or just a basis) if and only if

- 1. Y is linearly independent
- **2.** V(Y) = X

Note: The theorem *«Every vector space has a basis»* is a result of the *Axiom of Choice*.

Exempli gratia

- ${\ \ }$ $\left\{(0,1),(1,2)
 ight\}$ is a basis of \mathbb{R}^2
- \blacksquare {(1,1,0), (1,0,1), (0,1,1)} is a basis of \mathbb{R}^3
- ${\scriptstyle \label{eq:starses}}$ $\{(1,1,0),(1,2,0),(2,1,0)\}$ is not a basis of \mathbb{R}^3

Basis Properties

Theorem 15 (Uniqueness of Scalars) Let $\{x_1, x_2, ..., x_n\}$ be a basis for *X*. Then for each vector $x \in X$, there is a unique set of scalars $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ such that

 $x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$

Pf. Standard calculation.

Theorem 16 (Maximum Independent Set Size) Suppose that $B = \{x_1, x_2, ..., x_n\}$ is a basis of X with n finite and $Y = \{y_1, y_2, ..., y_m\}$ is a set of linearly independent vectors. Then $m \le n$.

Note: *n* is *finite* is necessary.

Proof of Theorem 16 - Outline

Proof Outline.

- 1. Assume m > n.
- 2. Write y_1 as a linear combination of the x_i . At least one coefficient can't be 0, say the coefficient of x_n (reindex x's if necessary).
- 3. Replace x_n in B with y_1 . Show B still is a basis for X.
- 4. Start over with y_2 and the "new" *B*. Replace x_{n-1} by y_2 .
- 5. Continue the process until y_n replaces x_1 .
- 6. *B* still a basis now is $\{y_1, y_2, ..., y_n\}$.
- 7. Thus y_{n+1} can be written as as linear combination from *B* contradicting the linear independence of *Y*. Hence $m \le n$.

Dimension

Theorem 17 If $B = \{x_1, x_2, \dots, x_N\}$ is a basis of *X* for some $N < \infty$, then every basis of *X* contains exactly *N* vectors.

Pf. • Let B_1 be a basis with n vectors and B_2 be a basis with m vectors.

• Apply Theorem 16 with B_1 as the basis and B_2 as the linearly independent set. Therefore $m \leq n$.

- Now apply Theorem 16 with B_2 as the basis and B_1 as the linearly independent set. Therefore $n \leq m$.
- Since $m \le n$ and $n \le m$, it follows that m = n.

11. Dimension of a Vector Space

Definition 16 (Dimension) If *X* has a finite basis of *n* vectors, then *X* is finite dimensional and has dimension dim(X) = n. If *X* is not finite dimensional, then *X* has infinite dimension and $dim(X) = \infty$.

Example 12 Several standard spaces:

•
$$dim(\mathbb{R}^n) = n$$

$$Im(\mathbb{P}^n) = n+1$$

■ $dim(\mathbb{R}^{\infty}) = \infty$ The space of real sequences is large (but it's a "small ∞ ")

• $dim(\mathbb{P}) = \infty$ (another "small ∞ ," isomorphic to \mathbb{R}^{∞})

Examples

Example 13 Infinite dimensional spaces

- $dim(\mathcal{C}[0,1]) = \infty$ The space of continuous functions on [0,1] is very large (a "big ∞ ")
- $dim(\mathcal{B}(\mathbb{R})) = \infty$ with $\mathcal{B}(\mathbb{R}) = \{$ bounded real functions $\}$
- *Is the following true:*

Let Z be an arbitrary set and X an arbitrary vector space over F. The space of all functions from Z to X, written X^Z , is a vector space over F with dimension $dim(X^Z) = dim(X)^{|Z|}$

Basis & Dimension Facts

Basis Facts

- Every vector space has a basis (requires the Axiom of Choice)
- Every linearly independent set can be extended to a basis
- A linearly independent set can be no larger than a basis
- A set containing more vectors than a basis must be linearly dependent
- Any two bases for a vector space contain the same number of vectors (finite dimensional case)
- If X has a set with n linearly independent vectors and every set of n + 1 vectors is dependent, then dim(X) = n
- If Y is a subspace of X, then $dim(Y) \le dim(X)$.

"Two Out of Three Ain't Bad"

Theorem 18 Suppose *X* is a vector space with dim(X) = n and $Y \subseteq X$. If any two of the following hold, then the third also holds.

- 1. Y spans X
- 2. *Y* is linearly independent
- 3. Y contains exactly n vectors

Theorem 19 Suppose that $dim(X) < \infty$ and that $X = Y \oplus Z$. Then dim(X) = dim(Y) + dim(Z).

Nota Bene: Recall that \oplus is the "interior analogue" of \times and that if $X = Y \times Z$, then $dim(X) = dim(Y) \times dim(Z)$.

"Sum of Dimensions" Proof

Proof of Theorem 19 (3.3.43).

Since $dim(X) < \infty$, so are dim(Y) and dim(Z). Therefore there are bases of Y and Z: $\mathcal{B}_Y = \{y_1, \ldots, y_n\}$ and $\mathcal{B}_Z = \{z_1, \ldots, z_m\}$. Set $\mathcal{B} = \mathcal{B}_Y \cup \mathcal{B}_Z$. Let

$$0 = \sum_{i=1}^{n} \alpha_i y_i + \sum_{i=1}^{m} \beta_i z_i$$

be a linear combination from \mathcal{B} . Since representation of vectors is unique in $X = Y \oplus Z$, we have that $0 = \sum_{i=1}^{n} \alpha_i y_i$ and $0 = \sum_{i=1}^{m} \beta_i z_i$ Therefore $0 = \alpha_i = \beta_j$ for all i and j as \mathcal{B}_Y and \mathcal{B}_Z are independent. I.e., \mathcal{B} is linearly independent. Since $X = Y \oplus Z$, it is clear that \mathcal{B} spans X. Hence, $|\mathcal{B}| = n + m = dim(X)$.

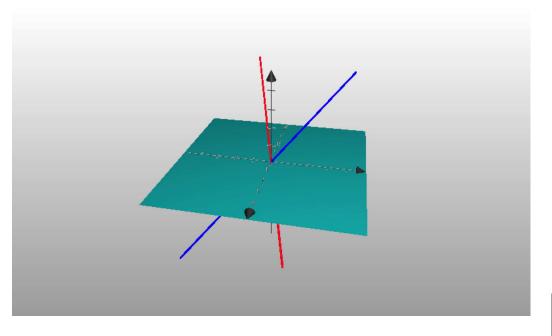
12. Subspaces and Direct Sums

The theorem *Every linearly independent set can be extended to a basis* has:

Corollary 20 Suppose *X* is an *n*-dimensional vector space with an *m*-dimensional subspace *Y*. Then there exists a subspace *Z* of dimension (n - m) such that X = Y + Z.

Pf. (Sketch) Take bases \mathcal{B}_X for X and \mathcal{B}_Y for Y. Eliminate the portion of \mathcal{B}_X dependent on \mathcal{B}_Y . The remaining vectors form a basis for Z.

Note: Z need not be unique. (Z = red or blue)



Linear Transformations

Definition 17 (Linear Transformation) A mapping T from a vector space X into a vector space Y, both spaces over the field F, is a linear transformation, written as $T \in L(X, Y)$, if and only if for all $x \in X, y \in Y$, and $\alpha \in F$, we have

1.
$$T(x+y) = T(x) + T(y)$$

2.
$$T(\alpha x) = \alpha T(x)$$

A nonlinear transformation is a mapping that is not linear.

Theorem 21 (Superposition Principle) $T \in L(X, Y)$ *if and only if*

$$T\left(\sum_{i=1}^{m} \alpha_i x_i\right) = \sum_{i=1}^{m} \alpha_i T\left(x_i\right)$$

Examples of Linear Transformations

Example 14

•
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T([x, y]) = [2x + 3y, x - y]$

• $T: \mathbb{R}^2 \to \mathbb{R}^1$ by T([x, y]) = [x]

•
$$D: \mathbb{P}^n \to \mathbb{P}^{n-1}$$
 by $D(p) = \frac{d}{dx} p(x)$

•
$$I: C[0,1] \to \mathbb{R} \ by I(f) = \int_0^1 f(t) \, dt$$

• Let $k \in C[a, b] \times C[a, b]$ such that for any $x \in C[a, b]$,

$$\widehat{x}(s) = \int_{a}^{b} x(t)k(s,t) \, dt \in \mathcal{C}[a,b]$$

Then $\widehat{\cdot} : \mathcal{C}[a, b] \to \mathcal{C}[a, b]$ is a linear transformation.^{*a*}

^aFredholm Integral Equation of the First Type or a kernel transform

13. Examples of Linear Transformations

Example 15

• Let $\mathcal{L}_1^c = \{f : \mathbb{R} \to \mathbb{C} \mid f \in \mathcal{C}(\mathbb{R}) \text{ and } \int_{\mathbb{R}} |f| < \infty\}$. Now define the Fourier transform $\mathcal{F}(f) \in \mathcal{L}_1^c$ by

$$\mathcal{F}(f)(s) = \int_{\mathbb{R}} f(t) \, e^{-ist} \, dt$$

Then $\mathcal{F}: \mathcal{L}_1^c \to \mathcal{L}_1^c$ is a linear transformation.

- Let $z \in \mathbb{C}$. Then $\overline{z} =$ (the complex conjugate of z) is a nonlinear transformation.
- Let | · | be the absolute value function on R. Is | · | a linear transformation from R to R?

Null Space and Range Space

Definition 18 Let $T \in L(X, Y)$. Then the

1. null space $\mathcal{N}(T)$ (or kernel ker(T)) is the set

$$\mathcal{N}(T) = \{ x \in X \mid T(x) = 0 \},\$$

2. range space $\mathcal{R}(T)$ (or image space) is the set

$$\mathcal{R}(T) = \{ y \in Y \mid y = T(x) \text{ for some } x \in X \} = T(X).$$

Theorem 22 Let $T \in L(X, Y)$. Then

- 1. $\mathcal{N}(T)$ is a subspace of X,
- **2.** $\mathcal{R}(T)$ is a subspace of *Y*.
- **Pf**. Exercise (3.4.20)

Range & Dimension

Theorem 23 If $T \in L(X, Y)$, then $\dim(\mathcal{R}(T)) \leq \dim(X)$.

Pf. Assume $X \neq \{0\} \neq \mathcal{R}(T)$, otherwise the result is trivial. Set n = dim(X) > 0. Choose $\{y_1, \ldots, y_{n+1}\} \subseteq \dim(\mathcal{R}(T))$. For each *i*, find x_i such that $T(x_i) = y_i$. Since $\dim(X) = n$, we know that there are scalars α_i so that

$$\alpha_1 x_1 + \dots + \alpha_{n+1} x_{n+1} = 0$$

Applying T to this linear combination yields

$$\alpha_1 y_1 + \dots + \alpha_{n+1} y_{n+1} = 0$$

Since the y_i were arbitrary, every subset of $\dim(\mathcal{R}(T))$ with n+1 vectors is linearly dep. Thence $\dim(\mathcal{R}(T)) \leq n$.

14. The Dimension Theorem

Theorem 24 The inverse image of a basis under a linear transformation is linearly independent. I.e., Let $T \in L(X, Y)$ and let $\mathcal{B}_Y = \{y_i\}$. For each i, choose an x_i such that $T(x_i) = y_i$. Then the set $\{x_i\}$ is linearly independent.

Pf. Exercise (3.4.24)

Theorem 25 (The Dimension Theorem) Let $T \in L(X, Y)$ with $dim(X) < \infty$. Then

 $\dim(\mathcal{R}(T)) + \dim(\mathcal{N}(T)) = \dim(X).$

Pf. Set $\dim(X) = n$ and $\dim(\mathcal{N}(T)) = s$ and set r = n - s. (*Need to show*: $\dim(\mathcal{R}(T)) = r = n - s$.)

The Dimension Theorem Proof

Pf. Find a basis for $\mathcal{N}(T)$ labeling the vectors $\{e_1, \ldots, e_s\}$. Extend this set to a basis for X by adding r vectors to have $\mathcal{B} = \{x_1, \ldots, x_r, e_1, \ldots, e_s\}$. Since \mathcal{B} is a basis, then $T(\mathcal{B})$ spans $\mathcal{R}(T)$. Since $T(e_i) = 0$, then $T(\{x_1, \ldots, x_r\})$ spans $\mathcal{R}(T)$. Set $y_i = T(x_i)$; so $\{y_1, \ldots, y_r\}$ spans $\mathcal{R}(T)$. Suppose a linear combination $\alpha_1 y_1 + \cdots + \alpha_r y_r = 0$. Then because $\sum_r \alpha_i T(x_i) = T(\sum_r \alpha_i x_i)$, we have that $\sum_r \alpha_i x_i \in \mathcal{N}(T)$, thus $\sum_r \alpha_i x_i = \sum_s \gamma_i e_i$ which can be written as

$$\alpha_1 x_1 + \dots + \alpha_r x_r - \gamma_1 e_1 - \dots - \gamma_s e_s = 0$$

which implies each $\alpha_i = 0$. Hence $\dim(\mathcal{R}(T)) = r$.

- What about the cases s = 0 and n?

(Go to TOC)

(Group-Project time!)

"Your Turn"

The Setup. Define $\mathcal{D}:\mathbb{R}^4\to\mathbb{R}^4$ by

$$\mathcal{D}([x_1, x_2, x_3, x_4]) = [x_2, 2x_3, 3x_4, 0]$$

The Project.

- 1. Is \mathcal{D} a linear transformation?
- 2. What is $\mathcal{R}(T)$?
- 3. Find $\dim(\mathcal{R}(T))$.
- 4. What is $\mathcal{N}(T)$?
- 5. Find dim $(\mathcal{N}(T))$.
- 6. Calculate $\dim(\mathcal{R}(T)) + \dim(\mathcal{N}(T))$.

15. Rank & Nullity

Definition 19 (Rank and Nullity of a Linear Transformation) Let $T \in L(X, Y)$.

- The rank ρ of T is the dimension of the range space; $\rho(T) = \dim(\Re(T))$
- The nullity ν of T is the dimension of the nullspace; $\nu(T) = \dim(\mathfrak{N}(T))$

Corollary 26 (Fundamental Theorem of Linear Algebra) Let $T \in L(X, Y)$ where dim(X) = n. Then

$$\rho(T) + \nu(T) = n$$

Pf. √

"Affine Nullspace"

Corollary 27 Let $T \in (X, Y)$ where $dim(X) < \infty$, and let $\mathcal{B} = \{x_1, \ldots, x_s\}$ be a basis for $\mathfrak{N}(T)$ so that $dim(\mathfrak{N}(T)) = s$. Then

- 1. a vector $x \in X$ satisfies T(x) = 0 iff there is a unique set of scalars α_i s.t. $x = \sum_{i=1}^{s} \alpha_i x_i$,
- 2. a vector $y_0 \in Y$ is in $\Re(T)$ iff there is at least one vector $x \in X$ s.t. $y_0 = T(x)$,
- 3. if vectors $x_0 \in X$ and $y_0 \in Y$ are s.t. $T(x_0) = y_0$, then $x \in X$ satisfies $T(x) = y_0$ iff there is a unique set of scalars β_i s.t. $x = x_0 + \sum_{i=1}^s \beta_i x_i$.

Pf. √

Inverses

Theorem 28 Let $T \in L(X, Y)$.

1. T^{-1} exists iff T(x) = 0 implies x = 0; i.e., $\mathfrak{N}(T) = \{0\}$.

2. If T^{-1} exists, then $T^{-1} \in L(\mathfrak{R}(T), X)$.

Pf. 1. (\Leftarrow) Assume $\mathfrak{N}(T) = \{0\}$. Then $T(x_1) = T(x_2) \Leftrightarrow T(x_1) - T(x_2) = 0 \Leftrightarrow T(x_1 - x_2) = 0 \Leftrightarrow x_1 - x_2 \in \mathfrak{N}(T) \Leftrightarrow x_1 = x_2$. (\Rightarrow) Now assume that T^{-1} exists and that T(x) = 0. Since T(0) = 0, then T(x) = T(0). Whence x = 0.

2. Assume that *T* is nonsingular and that $T(x_1) = y_1$, $T(x_2) = y_2$. Then $T^{-1}(y_1 + y_2) = T^{-1}(T(x_1) + T(x_2)) =$ $T^{-1}(T(x_1 + x_2)) = x_1 + x_2 = T^{-1}(y_1) + T^{-1}(y_2)$. For $\alpha \in F$, $T^{-1}(\alpha y_1) = T^{-1}(\alpha T(x_1)) = T^{-1}(T(\alpha x_1) = \alpha x_1 = \alpha T^{-1}(y_1)$.

Examples

Example Set 16

• Let
$$T([a, b]) = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} [a, b]$$
. Show T is nonsingular.
• Let $S([a, b]) = \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix} [a, b]$. Show T is singular.

•
$$\mathcal{D}: \mathbb{P} \to \mathbb{P}$$
 defined by $\mathcal{D}(p) = \frac{dp}{dx}$ is singular.

• Is $\mathcal{I}: \mathbb{P} \to \mathbb{P}$ defined by $\mathcal{I}(p) = \int p \, dx$ nonsingular?

■ Is T([a, b]) = [a + b, 0, a - b, 0, 0] invertible?

Project Solution

The Group-Project solution is much easier when looking at the spaces from a different "dimension."

The Setup. Define $\mathcal{D}:\mathbb{R}^4\to\mathbb{R}^4$ by

$$\mathcal{D}([x_1, x_2, x_3, x_4]) = [x_2, 2x_3, 3x_4, 0]$$

A Solution. Consider $\mathcal{T}: \mathbb{P}^3 \to \mathbb{P}^3$ with $\mathcal{T}(p) = p'$. $(\mathbb{P}^3 \cong \mathbb{R}^4)$

- $\mathfrak{R}(T) = \{ \text{polynomials of degree } 2 \} \cong \mathbb{R}^3$
- $4 = 3 + 1 \Rightarrow \mathbb{R}^4 \cong \mathbb{P}^3 = \left\{ p \in \mathbb{P}^3 \mid p(0) = 0 \right\} \oplus \mathfrak{N}(T)$

16. Singular and Nonsingular Examples

Example Set 17

• Let
$$T([a,b]) = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} [a,b]$$
. Show T is nonsingular.
• Let $S([a,b]) = \begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix} [a,b]$. Show T is singular.

•
$$\mathcal{D}: \mathbb{P} \to \mathbb{P}$$
 defined by $\mathcal{D}(p) = \frac{dp}{dx}$ is singular.

• Is $\mathcal{I}: \mathbb{P} \to \mathbb{P}$ defined by $\mathcal{I}(p) = \int p \, dx$ nonsingular?

• Is
$$T([a,b]) = [a+b,0,a-b,0,0]$$
 invertible?

"Inverse Results"

Theorem 29 Let $T \in L(X, Y)$ with $dim(X) < \infty$. Then T is invertible if and only if $\rho(T) = dim(X)$. T is said to have "full rank."

Pf. √

Theorem 30 Let $T \in L(X, Y)$ with $\dim(X) = \dim(Y) = n$ where $n < \infty$. Then T is invertible if and only if $\Re(T) = Y$.

Pf. (\Rightarrow) *T* invertible implies that $\dim(\mathfrak{R}(T)) = n = \dim(Y)$. Since $\mathfrak{R}(T)$ is a subspace of *Y*, then $\mathfrak{R}(T) = Y$.

(\Leftarrow) Choose a basis $\mathcal{B} = \{y_1, \dots, y_n\}$ for $\mathfrak{R}(T) = Y$. Then, since $T^{-1}(\mathcal{B})$ is an independent set of size n, it forms a basis for X. Hence the only set of scalars for which $\sum_i \alpha_i x_i = 0$ is $\alpha_i = 0$. Whence $\mathfrak{N}(T) = \{0\}$, so T is invertible.

Collected Results, I

Theorem 31 (Invertible Linear Transformations) Let X and Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

- 1. T is invertible or nonsingular
- **2.** T is injective or 1-1

3.
$$T(x) = 0$$
 implies $x = 0$; i.e., $\Re(T) = \{0\}$

4. For each $y \in Y$, \exists a unique $x \in X$ such that T(x) = y

5. If
$$T(x_1) = T(x_2)$$
, then $x_1 = x_2$

6. If $x_1 \neq x_2$, then $T(x_1) \neq T(x_2)$,

If X is finite dimensional, then TFAE:

7. T is injective

8.
$$\rho(T) = \dim(X)$$

Collected Results, II

Theorem 32 (Surjective Linear Transformations) Let Xand Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

- 1. T is surjective or onto
- 2. For $y \in Y$, there is at least one $x \in X$ such that T(x) = y

If X and *Y* are finite dimensional, then TFAE:

- 3. T is surjective
- **4.** $\rho(T) = \dim(Y)$

Pf. √

Collected Results, III

Theorem 33 (Bijective Linear Transformations) Let Xand Y be vector spaces over F and let $T \in L(X, Y)$. TFAE:

- 1. *T* is bijective or onto
- 2. For $y \in Y$, there is a unique $x \in X$ such that T(x) = y

If X and *Y* are finite dimensional, then TFAE:

3. T is surjective

4.
$$\rho(T) = \dim(X) = \dim(Y)$$

Theorem 34 (Common Finite Dimension) Let X and Y be vector spaces over F with finite dimension n and $T \in L(X, Y)$. Then

T: injective \Leftrightarrow T: surjective \Leftrightarrow T: bijective \Leftrightarrow T: invertible

Transformation Spaces

Definition 20 For *S* and *T* in L(X, Y) and α in *F*, define

1.
$$S + T$$
 by $(S + T)(x) \stackrel{\Delta}{=} S(x) + T(x)$

2. $\alpha S \ \mathbf{by} \ (\alpha S)(x) \stackrel{\Delta}{=} \alpha S(x)$

3.
$$S \circ T$$
 by $(S \circ T)(x) \stackrel{\Delta}{=} S(T(x))$

Theorem 35 L(X, Y) is a vector space over F (using 1 & 2)

Theorem 36 L(X, X) is an associative algebra with identity over *F* (using 1, 2, & 3, and identity I(x) = x)

(Go Back)

(View LATEX source)

Intro to Linear Algebra MAT 5230 - p. 65/13

17. Transformation Spaces

Definition 21 For *S* and *T* in L(X, Y) and α in *F*, define

- 1. S + T by $(S + T)(x) \stackrel{\Delta}{=} S(x) + T(x)$
- **2.** $\alpha S \ \mathbf{by} \ (\alpha S)(x) \stackrel{\Delta}{=} \alpha S(x)$
- **3.** ST by $(ST)(x) \stackrel{\Delta}{=} S(T(x))$ when range $(T) \subseteq \operatorname{dom}(S)$

Theorem 37 Let $S, T, U \in L(X, X)$. Then

- 1. If ST = US = I, then S is bijective and $S^{-1} = T = U$.
- **2.** If *S* is bijective, then $(S^{-1})^{-1} = S$.
- **3.** If *S* and *T* are bijective, then $(ST)^{-1} = T^{-1}S^{-1}$.
- 4. If S is bijective and $\alpha \neq 0$, then $(\alpha S)^{-1} = (1/\alpha) \cdot S^{-1}$.

Polynomials of Transforms

Theorem 38 L(X, X) is an associative algebra^{*a*} with identity over *F* (using 1, 2, & 3, and identity I(x) = x). L(X, X) is usually noncommutative.

Definition 22 (Powers of Transforms) Let $T \in L(X, X)$. Then set $T^0 = I$ and, for n > 0, define $T^{(n)} \triangleq T \cdot T^{(n-1)}$ and $T^{(-n)} \triangleq (T^{-1})^n$.

Definition 23 Let $p \in \mathbb{P}^n$, so that $p(\lambda) = a_0 + a_1\lambda + \dots + a_n\lambda^n$. For $T \in L(X, X)$, define $p(T) = a_0 I + a_1T + \dots + a_nT^n = \sum_{i=0}^n \alpha_i T^i$.

^{*a*} "Vector space plus multiplication." See pg. 56 and 104 of the text.

Finite Dimension Structure Theorem

Definition 24 X is isomorphic to Y, written $X \cong Y$, if and only if there is a bijection $T \in L(X, Y)$.

Theorem 39 (Structure Theorem) Every n-dimensional vector space X over the field F is isomorphic to F^n .

Pf. Choose a basis $\mathcal{B} = \{e_1, \ldots, e_n\}$ for *X*. Then define $T \in L(X, F^n)$ by

$$T\left(\sum_{i=1}^{n} \alpha_i e_i\right) = [\alpha_1, \alpha_2, \dots, \alpha_n]$$

Corollary 40 Let F be a field and n be a positive integer. There is exactly one vector space of dimension n over F.

18. Linear Functionals

Definition 25 Let X be a vector space over F. Then $f \in L(X, F)$ is called a linear functional.

Example Set 18

- Let $f \in C[a, b]$. Then $F(f) = \int_a^b f(t) dt$ is a linear functional.
- Let $f \in C[a, b]$ and choose $k \in C[a, b]$. Then $F_k(f) = \int_a^b f(t)k(t) dt$ is a linear functional.
- Let $f \in C[a, b]$ and $x_0 \in [a, b]$. Is $\frac{df}{dt}(x_0)$ a linear functional?
- Let *F* be a field. The mappings $\operatorname{proj}_i : F^n \to F$ for i = 1..n given by $\operatorname{proj}_i ([\alpha_1, \alpha_2, \dots, \alpha_n]) = \alpha_i$ are linear functionals. $\phi = \sum \alpha_i \operatorname{proj}_i$ is also a linear functional.

Vector Space of Linear Functionals

Definition 26 Let *X* be a vector space over *F*. Define $X^f = L(X, F)$. When $f \in X^f$ is evaluated at the vector $x \in X$, we use the notation $f(x) \stackrel{\Delta}{=} \langle x, f \rangle$. Using *x'* in place of $f \in X^f$, we see

$$(f_1 + f_2)(x) = \langle x, x'_1 + x'_2 \rangle \stackrel{\Delta}{=} \langle x, x'_1 \rangle + \langle x, x'_2 \rangle$$
$$= f_1(x) + f_2(x)$$

and

$$(\alpha f)(x) = \langle x, \alpha x' \rangle \stackrel{\Delta}{=} \alpha \langle x, x' \rangle$$
$$= \alpha f(x)$$

Theorem 41 $X^f = L(X, F)$ is a vector space over *F* called the algebraic conjugate of *X*.

Algebraic Conjugate Basis

Theorem 42 Let *X* be a vector space with basis $\mathcal{B} = \{e_1, \ldots, e_n\}$ and let $\{\alpha_1, \ldots, \alpha_n\}$ be a set of arbitrarily chosen scalars. Then there is a unique linear functional $x' \in X^f$ such that $\langle e_i, x' \rangle = \alpha_i$ for i = 1..n.

Pf. (\exists) For every $x \in X$, we have unique scalars ξ_i such that $x = \sum_n \xi_i e_i$. Define $x' \in X^f$ by $\langle x, x' \rangle = \sum_n \alpha_i \xi_i$. If $x = e_i$ for some i, then $\xi_i = 1$ and $\xi_j = 0$ for every $j \neq i$. Hence $\langle x, x' \rangle = \alpha_i$; i.e., $\langle e_i, x' \rangle = \alpha_i$. (!) Suppose $\langle e_i, x'_1 \rangle = \alpha_i$ and $\langle e_i, x'_2 \rangle = \alpha_i$ for i = 1..n. Then $\langle e_i, x'_1 \rangle - \langle e_i, x'_2 \rangle = 0$ for i = 1..n, and so $\langle e_i, x'_1 - x'_2 \rangle = 0$ for i = 1..n. This implies that $x'_1 = x'_2$.

Definition 27 (Kronecker Delta) Set $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$.

19. Conjugate Dimension Theorem

Theorem 43 Let X be a finite dimensional vector space with basis $\mathcal{B} = \{e_1, \ldots, e_n\}$. Then there exists a unique basis $\mathcal{B}' = \{e'_1, \ldots, e'_n\}$ for X^f such that $\langle e_i, e'_j \rangle = \delta_{ij}$; we call \mathcal{B}' the dual basis of \mathcal{B} . Further $\dim(X) = n = \dim(X^f)$.

Pf. There exists a unique set of linear functionals $\mathcal{B}' = \{e'_j\}$ such that $\langle e_i, e'_j \rangle = \delta_{ij}$ for i, j = 1..n which are found by applying the previous theorem to the sets $A_j = \{\delta_{ij} | j = 1..n\}.$

 $(\mathcal{B}' \text{ is linearly independent})$ Since $\sum \beta_i e'_i = 0$ implies

$$0 = \left\langle e_j, \sum_i \beta_i e'_i \right\rangle = \sum_i \beta_i \langle e_j, e'_i \rangle = \sum_i \beta_i \delta_{ij} = \beta_j$$

Conjugate Dimension Theorem, II

(Pf.) (\mathcal{B}' spans X^f) Let $x' \in X^f$ and define $\alpha_i = \langle e_i, x' \rangle$. (This form is often called a *projection*.) For $x \in X$, there are scalars so that $x = \sum_i \xi_i e_i$. Then

$$\langle x, x' \rangle = \left\langle \sum_{i} \xi_{i} e_{i}, x' \right\rangle = \sum_{i} \langle \xi_{i} e_{i}, x' \rangle = \sum_{i} \xi_{i} \langle e_{i}, x' \rangle = \sum_{i} \xi_{i} \alpha_{i}$$

It also follows that $\langle x, e'_j \rangle = \sum_i \xi_i \langle e_i, e'_j \rangle = \xi_j$. Combine these two results to obtain

$$\langle x, x' \rangle = \sum_{i} \alpha_i \langle x, e'_i \rangle = \left\langle x, \sum_{i} \alpha_i e'_i \right\rangle$$

which gives us $x' = \sum_i \alpha_i e'_i$.

20. Algebraic Transpose

Definition 28 (Algebraic Transpose) Let $S \in L(X, Y)$. Then $S^T : Y^f \to X^F$ given by $\langle x, S^T y' \rangle = \langle Sx, y' \rangle$ is the algebraic transpose of *S*.

Example 19 Let $X = \mathbb{R}^3$ and $Y = \mathbb{R}^2$. Define $S \in L(\mathbb{R}^3, \mathbb{R}^2)$ by $y = S(x) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $y' \in Y^f$ by $\langle y, y' \rangle = \begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Then $x' = S^T(y')$ is found by

$$\langle x, x' \rangle = \langle x, S^T y' \rangle = \langle Sx, y' \rangle$$

$$\langle x, x' \rangle = \langle \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, y' \rangle$$

$$\langle x, x' \rangle = \langle \begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \end{bmatrix}, y' \rangle$$

$$\langle x, x' \rangle = x_1 + 2x_2 + x_3$$

$$x'(x) = (S^T(y'))(x)$$

$$x'(x) = y'(S(x))$$

$$x'(x) = y'(\begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \end{bmatrix})$$

$$x'(x) = x_1 + 2x_2 + x_3$$

The Space of Algebraic Transposes

Theorem 44 Let S^T be the algebraic transpose of S where $S \in L(X, Y)$. Then $S^T \in L(Y^f, X^f)$.

Pf. (Calculation.) 1. $S^T(y'_1 + y'_2) = S^T(y'_1) + S^T(y'_2)$:

$$\langle x, S^T(y_1' + y_2') \rangle = \langle Sx, (y_1' + y_2') \rangle = \langle Sx, y_1' \rangle + \langle Sx, y_2' \rangle$$
$$= \langle x, S^Ty_1' \rangle + \langle x, S^Ty_2' \rangle$$

2. $S^T(\alpha y') = \alpha S^T(y')$:

$$\langle x, S^T(\alpha y') \rangle = \langle Sx, \alpha y' \rangle = \alpha \langle Sx, y' \rangle$$
$$= \alpha \langle x, S^T(y') \rangle = \langle x, \alpha S^T(y') \rangle$$

Algebra of Algebraic Transposes

Theorem 45 Let *I* be the identity transform of L(X, X). Then I^T is the identity transform of $L(X^f, X^f)$.

Theorem 46 Let 0 be the zero transform of L(X, Y). Then 0^T is the zero transform of $L(Y^f, X^f)$.

Theorem 47 Let $R, S \in L(X, Y)$ and $T \in L(Y, Z)$ and let R^T , S^T , and T^T be the respective transposes. Then

1.
$$(R+S)^T = R^T + S^T$$

2. $(TS)^T = S^T T^T$

Exercise 3.52.32 (Pg. 113.) Prove the theorems.

21. Bilinear Functionals

Recall: We have $\overline{a + bi} = a - bi$ for any complex number.

Definition 29 (Conjugate Functional) Let X be a vector space over \mathbb{C} . A mapping $g: X \to \mathbb{C}$ is a conjugate functional iff $g(\alpha_1 x_1 + \alpha_2 x_2) = \overline{\alpha_1} g(x_1) + \overline{\alpha_2} g(x_2)$ for all $x_i \in X$ and $\alpha_i \in \mathbb{C}$

Definition 30 (Bilinear Form) Let X be a vector space over \mathbb{C} . A mapping $g: X \times X \to \mathbb{C}$ is a bilinear form or bilinear functional *iff for all* x, x_i and $y, y_i \in X$ and $\alpha_i, \beta_i \in \mathbb{C}$

1. $g(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1 g(x_1, y) + \alpha_2 g(x_2, y)$

2. $g(x, \beta_1 y_1 + \beta_2 y_2) = \overline{\beta_1} g(x, y_1) + \overline{\beta_2} g(x, y_2)$

That is, g is linear in the first variable and conjugate linear in the second variable.

Examples

Example Set 20

1. Let $X = \mathbb{C}^2$ and g be given by

 $g(z_1, z_2) = \mathfrak{Re}(z_1)\mathfrak{Re}(z_2) + \mathfrak{Im}(z_1)\mathfrak{Im}(z_2).$

2. Let $X = \mathbb{R}^2$ and h be given by

$$h(x,y) = \vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2.$$

- 3. Let X be a vector space over \mathbb{C} and let $P, Q \in X^f$. Then $k(x_1, x_2) = P(x_1)\overline{Q(x_2)}$ is a bilinear functional.
- 4. The conjugate of a bilinear functional is also a bilinear functional. I.e., $h(x, y) = \overline{g(x, y)}$.

Definitions

Definition 31 Let *X* be a vector space over \mathbb{C} and *g* be a bilinear functional on *X*. Then for all $x, y \in X$,

- g is symmetric iff $g(x,y) = \overline{g(y,x)}$.
- g is positive iff $g(x, x) \ge 0$.
- *g* is strictly positive iff g(x, x) > 0 whenever $x \neq 0$.
- $\tilde{g}(x) = g(x, x)$ is the quadratic form induced by g.

Example 21 For $h : \mathbb{R}^2 \to \mathbb{R}$ of Example Set 20, No 2, the induced quadratic form is $\tilde{h}(x) = \tilde{h}([x_1, x_2]) = x_1^2 + x_2^2$.

22. Quadratic Forms & Inner Products

Theorem 48 Let g be a bilinear functional. Then

$$\frac{g(x,y) + g(y,x)}{2} = \tilde{g}\left(\frac{x+y}{2}\right) - \tilde{g}\left(\frac{x-y}{2}\right)$$

Theorem 49 (Polarization) Let X be a vector space over \mathbb{C} and g be a bilinear functional on X. Then

$$g(x,y) = \left[\tilde{g}\left(\frac{x+y}{2}\right) - \tilde{g}\left(\frac{x-y}{2}\right)\right] + i\left[\tilde{g}\left(\frac{x+iy}{2}\right) - \tilde{g}\left(\frac{x-iy}{2}\right)\right]$$

"Symmetry is Real"

Theorem 50 Let g and h be bilinear functionals on the complex vector space X. If $\tilde{g} = \tilde{h}$, then g = h.

Theorem 51 A bilinear functional g on a complex vector space X is symmetric iff \tilde{g} is real.

Pf. (\Rightarrow) Let *g* be symmetric, then $g(x,y) = \overline{g(y,x)}$ so that $\tilde{g}(x) = \overline{\tilde{g}(x)}$. Hence \tilde{g} is real.^{*a*} (\Leftarrow) If \tilde{g} is real, set $h(x,y) = \overline{g(y,x)}$. Then $\tilde{h}(x) = \overline{\tilde{g}(x,x)} = g(x,x) = \tilde{g}(x)$; i.e., $\tilde{h} = \tilde{g}$. By the previous theorem, h = g, and hence $g(x,y) = \overline{g(y,x)}$. That is *g* is symmetric.

^a
$$z = \overline{z} \Rightarrow x + iy = x - iy \Rightarrow y = 0 \Rightarrow z \in \mathbb{R}.$$

Inner Product

Ex. Work through example 3.6.18 on pg. 117.

Definition 32 (Inner Product) A bilinear functional g is an inner product *iff*

- 1. g is strictly positive g(x, x) > 0 whenever $x \neq 0$
- **2.** g is symmetric $g(x,y) = \overline{g(y,x)}$

Definition 33 (Inner Product) (Alternate Definition) A function $(\cdot, \cdot) : X \times X \to \mathbb{C}$ is an inner product iff

1. (x, x) > 0 whenever $x \neq 0$ and (0, 0) = 0

2. $(x, y) = \overline{(y, x)}$ 3. $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ 4. $(x, \alpha y + \beta z) = \overline{\alpha}(x, y) + \overline{\beta}(x, z)$

Inner Product Space

Definition 34 A complex vector space with an inner product is an inner product space. A subspace of an inner product space with the restricted inner product is an inner product subspace.

Definition 35 Let *X* be an inner product space. Two vectors *x* and *y* are orthogonal, written as $x \perp y$, iff (x, y) = 0. If *x* is orthogonal to every vector in a set $A \subseteq X$, then $x \perp A$.

Example Set 22

- 1. Let $X = \mathbb{R}^2$ and let $(x, y) = x_1y_1 + x_2y_2$. Then $\{X; (\cdot, \cdot)\}$ is a real inner product space.
- 2. Let $X = \mathbb{C}^n$ and let $(u, v) = \sum_n u_i \overline{v_i}$. Then $\{X; (\cdot, \cdot)\}$ is a complex inner product space.

23. Inner Product Space Examples

Example 23 Let $X = C_{\mathbb{C}}[0,1]$ and set $(f,g) = \int_0^1 f(t)\overline{g(t)} dt$.

1.
$$(t^2 + it, 1 - it) = \int_0^1 (t^2 + it)(1 + it)dt = \frac{3}{4}i$$

2. $(t^2 + it, 36t + (2t - 25)i) = 0$, thence it follows that $(t^2 + it) \perp (36t + (2t - 25)i)$.

3.
$$(e^{2\pi kit}, e^{2\pi nit}) = \int_0^1 e^{2\pi (k-n)it} dt = \frac{i}{2\pi (n-k)} e^{-2\pi i (n-k)t} \Big|_0^1$$

So $(e^{2\pi kit}, e^{2\pi nit}) = \delta_{kn}$. Thus $\mathcal{E} = \{e^{2\pi nit} : n \in \mathbb{Z}\}$ forms a set of mutually orthogonal functions.

Orthogonal Polynomials

Example 24 Let $X = C_{\mathbb{R}}[0, 2\pi]$ and define the inner product $(f, g) = \int_{0}^{2\pi} f(t)g(t) dt.$

1.
$$(t^2 + t, 1 - t) = \int_0^{2\pi} (t^2 + t)(1 - t)dt = 2\pi^2(1 - 2\pi^2)$$

2.
$$(\cos(kt), \cos(nt)) = \int_0^{2\pi} \cos(kt) \cos(nt) dt = \frac{\pi}{2} \delta_{kn}$$
. So $\{\cos(nt) : n = 0..\infty\}$ is a mutually orthogonal set.

3. Set cos(t) = x. Then $cos(nt) = cos(n \arccos(x))$ becomes a polynomial in x. The inner product becomes

$$(f,g) = \frac{2}{\pi} \int_{-1}^{+1} f(t)g(t) \frac{1}{\sqrt{1-t^2}} dt$$

Orthogonal Polynomials, II

Example 24

(3.) Set $T_n(x) = \cos(n \arccos(x))$. Then $(T_k, T_n) = \delta_{kn}$, so that $\{T_n, n = 0..\infty\}$ forms an orthogonal set of polynomials. The first few Chebyshev polynomials are $T_0(x) = 1$ and

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$$

24. Projections

Definition 36 Let $X = X_1 \oplus X_2$ and let $x = x_1 + x_2$ be the unique representation of $x \in X$ relative to $X_1 \oplus X_2$. Then define the mapping P by $P(x) = x_1$. We call P the projection on X_1 along X_2 .

Theorem 52 Let $X = X_1 \oplus X_2$ and P be the projection on X_1 along X_2 . Then

- **1.** $P \in L(X, X)$ and $P \in L(X, X_1)$
- **2.** $\Re(P) = X_1$
- **3.** $\mathfrak{N}(P) = X_2$

Pf. √

Example 25 Let $X = \mathbb{R}^2$ and $P([x_1, x_2]) = x_2$.

Projections, II

Example 26 Let $X = \mathbb{P}^3$ and $P(\sum_{i=0}^{3} \alpha_i x^i) = \alpha_0 + \alpha_2 x^2$.

Theorem 53 Let $P \in L(X, X)$. Then P is a projection on $\Re(P)$ along $\Re(P)$ iff $P^2 = P$.

Pf. (\Rightarrow) Suppose that *P* is the projection on $\Re(P)$ along $\mathfrak{N}(P)$. Then $X = \mathfrak{R}(P) \oplus \mathfrak{N}(P)$. Let $x = x_1 + x_2$. Then $P^{2}(x) = P(P(x_{1} + x_{2})) = P(x_{1}) = x_{1}$ Hence $P^{2} = P$. (\Leftarrow) Now suppose that $P^2 = P$. (i) Let $y \in \Re(P)$. Then $\exists x \in X \text{ so that } P(x) = y. \text{ Whence } P(P(x)) = P(y). \text{ But }$ $P^2 = P$, so P(P(x)) = P(x) = y; i.e. P(y) = y. If y is also in $\mathfrak{N}(P)$, then P(y) = 0 which implies that y = 0. Hence $\Re(P) \cap \Re(P) = \{0\}$. (ii) For $x \in X, x = P(x) + (I - P)(x)$. Set $x_1 = P(x)$ and $x_2 = (I - P)(x) = x - x_1$. Thence X is equal to $X_1 \oplus X_2$ with P being the projection on X_1 along X_2 .

Projection "Symmetry"

Definition 37 $P \in L(X, X)$ is idempotent iff $P^2 = P$.

Theorem 54 *P* is a projection on X_1 along X_2 iff (I - P) is a projection on X_2 along X_1 .

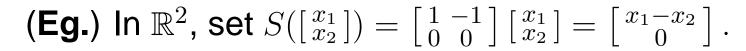
Corollary 55 If *P* is projection, then $X = \Re(P) \oplus \Re(P)$

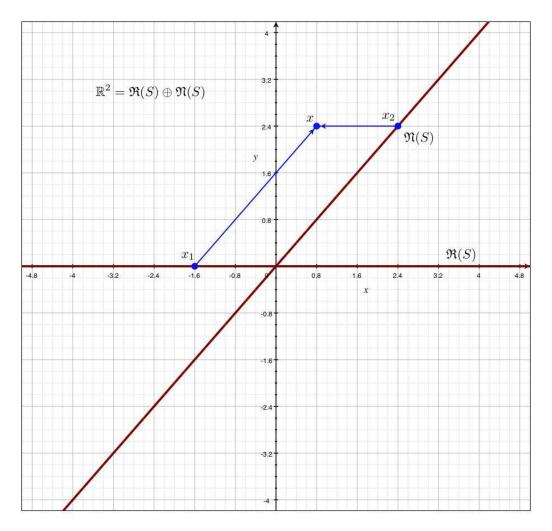
Example Set 27 Let $X = \mathbb{R}^2$.

- **Set** $R(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$. Is *R* a projection?
- Set $S(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 x_2 \\ 0 \end{bmatrix}$. Is *S* a projection?
- Set $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2x_2 \end{bmatrix}$. Is *T* a projection?

Definition 38 *P* is an orthogonal projection on an inner product space iff $\Re(P) \perp \Re(P)$.

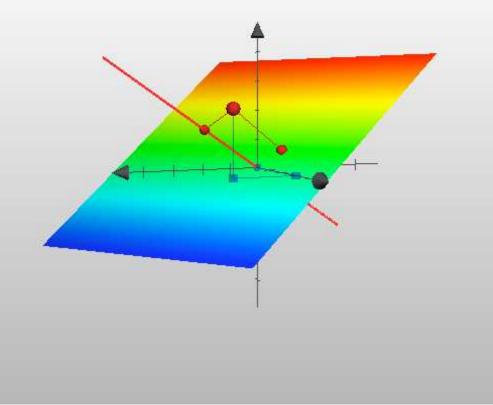
Projection Example S





Projection Example in \mathbb{R}^3

(Eg.) In
$$\mathbb{R}^3$$
, set $X_1 = \left\{ \begin{bmatrix} -(r+t) \\ r+1 \\ t-1 \end{bmatrix} \right\}$ and $X_2 = \left\{ \begin{bmatrix} 2t \\ 2t \\ t \end{bmatrix} \right\}$.



25. Eigenvalues

Definition 39 Let $T \in L(X, X)$, where X is an *n*-dimensional vector space over F. A scalar λ such that $T(x) = \lambda x$ for some nonzero x is called an eigenvalue of T.

Theorem 56 Let $T \in L(X, X)$ and let $\lambda \in F$. Then $\mathfrak{N}_{\lambda} = \{x \mid T(x) = \lambda x\}$ is a subspace of X. This subspace is equal to $\mathfrak{N}(\lambda I - T)$ and, if nontrivial, is called an eigenspace.

Pf. √

Background: Let *X* be an *n*-dimensional vector space over *F*. Then $X \cong F^n$. Every linear transformation $T \in L(X, X)$ can be described by its action on a basis. Choosing a basis, allows *T* to be represented as matrix multiplication (in *F*). Using the "right" bases gives *T* as a diagonal matrix greatly simplifying everything.

Eigenvalues, **II**

- Eigenvalue notes from Luke
- Eigenvalues and differential equations notes from Celes

26. Vector Spaces & Matrices

Background. Let *X* be a vector space over the field *F* and let $dim(X) = n < \infty$.

- Then $X \cong F^n$
- Then, given a basis \mathcal{B}_X , each *x* ∈ *X* can be written as
 $x = [\alpha_1, \ldots, \alpha_n]_{\mathcal{B}_X}$ in "basis order" (row or col format ^{*a*})
- Let $T \in L(X, Y)$. *T*'s action on \mathcal{B}_X , i.e., the set $T(\mathcal{B}_X)$, completely determines T(x) for any $x \in X$.
- Let \mathcal{B}_Y be a basis for Y. Then there is a matrix T based on \mathcal{B}_X and \mathcal{B}_Y , so that

$$y = T(x) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \times \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

^{*a*} "Column" and "row" vectors are artifices to aid the arithmetic.

Examples and $\mathbf{T} = [T]$

Example Set 28

- 1. Let $X = \mathbb{R}^2$. Then $[1, 2]_{\{[1,0],[0,1]\}} = [-1, 1]_{\{[1,1],[2,3]\}}$.
- 2. Let $X = \mathbb{P}^2$ with the "standard basis" $\{e_i = t^i\}$. $x = [1, 2, 3] = 1 + 2t + 3t^2$
- 3. Let $D : \mathbb{P}^3 \to \mathbb{P}^3$ be differentiation. Then, with the standard basis $\{1, t, t^2, t^3\}$,

$$D\left(\begin{bmatrix}\alpha\\\beta\\\gamma\\\delta\end{bmatrix}\right) = \begin{bmatrix}0\ 1\ 0\ 0\\0\ 0\ 2\ 0\\0\ 0\ 0\ 0\end{bmatrix} \cdot \begin{bmatrix}\alpha\\\beta\\\gamma\\\delta\end{bmatrix} = \begin{bmatrix}\beta\\2\gamma\\3\delta\\0\end{bmatrix}$$

Definition 40 (The matrix of *T*) *If* $\mathcal{B}_X = \{e_j\}$ *and* $\mathcal{B}_Y = \{f_i\}$, then $\mathbf{T} = [a_{ij}]$ where $a_{ij} = \operatorname{proj}_i(T(e_j))$ with $\operatorname{proj}_i : Y \to Y$ being the projection on the *i*th coordinate of *Y* w.r.t. \mathcal{B}_Y .

The Matrix of T

Example Set 29 Let $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ given by $T([x_1, x_2]) = [x_1 - x_2, x_1 + x_2].$

1. Use the standard basis for both. Then $\mathbf{T} = \begin{bmatrix} +1 & -1 \\ +1 & +1 \end{bmatrix}$.

2. Use $\mathcal{B}_X = \{[1,1], [2,3]\}$ and $\mathcal{B}_Y = \{[1,2], [4,3]\}$. Then $\mathbf{T} = \begin{bmatrix} \frac{12}{5} & -\frac{2}{5} \\ \frac{37}{5} & -\frac{2}{5} \end{bmatrix}$.

—We now return you to the regularly scheduled program.—

Definition 41 (Coordinate representation) Let $x \in X$ and let $\mathcal{B} = \{e_1, \ldots, e_n\}$ be a basis for X. Then there are unique scalars ξ_j such that $x = \sum_j \xi_j$. Write x in coordinate

representation with respect to the basis \mathcal{B} as $x = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi \end{bmatrix}_{\mathcal{B}}$.

The Transition Matrix

Example 30 Let $\mathcal{B} = \{e_1, \dots, e_4\}$ be the standard basis for \mathbb{R}^4 . Set $\mathcal{B}^* = \{[1, 2, 1, 0], [3, 3, 3, 0], [2, -10, 0, 0], [-2, 1, -6, 2]\}$. Then, for $x \in \mathbb{R}^4$, define $T_{\mathcal{B}^* \to \mathcal{B}}$ by $[e_1 \dots e_4]$ so

$$[x]_{\mathcal{B}} = \begin{bmatrix} 1 & 3 & 2 & -2\\ 2 & 3 & -10 & 1\\ 1 & 3 & 0 & -6\\ 0 & 0 & 0 & 2 \end{bmatrix} \times [x]_{\mathcal{B}^*}$$

Hence

$$[x]_{\mathcal{B}^*} = \begin{bmatrix} 1 & 3 & 2 & -2 \\ 2 & 3 & -10 & 1 \\ 1 & 3 & 0 & -6 \\ 0 & 0 & 0 & 2 \end{bmatrix}^{-1} \times [x]_{\mathcal{B}} = \begin{bmatrix} 5 & 1 & -6 & -\frac{27}{2} \\ -\frac{5}{3} & -\frac{1}{3} & \frac{7}{3} & \frac{11}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} & -1 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \times [x]_{\mathcal{B}}$$

Query: How is a vector in \mathcal{B}_1 coordinates expressed in \mathcal{B}_2 coordinates? Can of cake: use

$$T_{\mathcal{B}_1 \to \mathcal{B}_2} = T_{\mathcal{B}_2 \to \mathcal{B}}^{-1} \times T_{\mathcal{B}_1 \to \mathcal{B}}$$

27. Rank of a Matrix

Theorem 57 Let $T \in L(X, Y)$ where dim(X) = n and dim(Y) = m. The $\rho(T) = r$ iff there are bases \mathcal{B}_X and \mathcal{B}_Y such that

$$\mathbf{T} = \underbrace{\begin{bmatrix} r & & & \\ 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ & & & & & & & & \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ & & & & & & & & \\ 0 & \dots & 0 & 0 & \dots & 0 \\ & & & & & & & & \\ 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}}_{n=\dim(X)} m = \dim(Y)$$

The Rank Theorem Examples

Example Set 31

1. Consider $T \in L(\mathbb{R}^3 \to \mathbb{R}^2)$. Then T must have one of the forms below (assuming proper choice of bases):

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Explain why.

2. Consider $T \in L(\mathbb{R}^3 \to \mathbb{R}^4)$. Then T must have one of the forms below (assuming proper choice of bases):

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Explain why.

The Rank Theorem Proof

Theorem 57 Let $T \in L(X, Y)$. Then $\rho(T) = r$ iff $\mathbf{T} = \begin{bmatrix} Id & 0 \\ 0 & 0 \end{bmatrix}$. **Pf.** (\Leftrightarrow) Let $r = \rho(T)$. Choose a basis for $\mathfrak{N}(T)$ of n - r vectors listing it as $\{e_{r+1}, e_{r+2}, \ldots, e_n\}$. Extend this basis to all of X as $\mathcal{B}_X = \{e_1, e_2, \ldots, e_r, e_{r+1}, \ldots, e_n\}$. Calculate $\mathcal{F} = \{T(e_i) \mid i = 1..r\}$ which forms a basis for $\mathfrak{R}(T)$. (Thm 3.4.25) Extend \mathcal{F} to a basis \mathcal{B}_Y by adding vectors $\{f_{r+1}, \ldots, f_m\}$. (Thm 3.3.44) Then

$$f_{1} = \mathbf{T}e_{1} = (1)f_{1} + (0)f_{2} + \dots + (0)f_{r} + (0)f_{r+1} + \dots + (0)f_{m}$$

$$f_{2} = \mathbf{T}e_{2} = (0)f_{1} + (1)f_{2} + \dots + (0)f_{r} + (0)f_{r+1} + \dots + (0)f_{m}$$

$$\dots$$

$$f_{r} = \mathbf{T}e_{r} = (0)f_{1} + (0)f_{2} + \dots + (1)f_{r} + (0)f_{r+1} + \dots + (0)f_{m}$$

$$0 = \mathbf{T}e_{r+1} = (0)f_{1} + (0)f_{2} + \dots + (0)f_{r} + (0)f_{r+1} + \dots + (0)f_{m}$$

$$\dots$$

$$0 = \mathbf{T}e_{n} = (0)f_{1} + (0)f_{2} + \dots + (0)f_{r} + (0)f_{r+1} + \dots + (0)f_{m}$$

28. Rank & Algebra of Matrices

Definition 42 Let $\mathbf{A} \in \mathfrak{M}_{mn}$ be the matrix of $A \in L(X, Y)$ w.r.t. the bases \mathcal{B}_X and \mathcal{B}_Y . The rank of \mathbf{A} is the largest number of linearly independent columns in \mathbf{A} .

Theorem 58 Let A, B, and C be comparable/conformal matrices and let $\alpha, \beta \in F$. Then

1.
$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$$

2. $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$
3. $\mathbf{A}(\mathbf{B}\mathbf{C}) = (\mathbf{A}\mathbf{B})\mathbf{C}$
4. $(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A}$
5. $\alpha(\mathbf{A} + \mathbf{B}) = \alpha\mathbf{A} + \alpha\mathbf{B}$
6. $(\alpha\mathbf{A})(\beta\mathbf{B}) = (\alpha\beta)(\mathbf{A}\mathbf{B})$
7. $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
8. $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{A})$

Algebra of Matrices

Theorem 59

- 1. The zero matrix $\mathbf{0} = [0_{ij}]$ represents the zero transform 0(x) = 0 for every basis.
- 2. The identity matrix $I = [\delta_{ij}]$ represents the identity transform I(x) = x for every basis.
- 3. The matrix A is nonsingular iff the transform A is nonsingular.
- 4. If A is nonsingular, then A^{-1} is unique.
- 5. If A_n and B_n are nonsingular, then $(AB)^{-1} = B^{-1}A^{-1}$.
- **6.** $\operatorname{rank}(\mathbf{A}_n) = n$ if and only if $(\mathbf{A}_n x = 0 \Leftrightarrow x = 0)$.

7. For
$$A \in \mathfrak{M}_n$$
, set $A^m = \underbrace{A \cdot A \cdots A}_{m}$ & $A^{-m} = (A^{-1})^m$.

Partitioned Vectors & Matrices

Partitioning a vector or matrix can be very useful and is natural in direct sums. E.g.,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & b_{11} \\ a_{21} & a_{22} & b_{21} \\ c_{11} & c_{12} & d_{11} \end{bmatrix}, \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{11} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{21} \end{bmatrix}$$

Theorem 60 Let $P \in L(X, X)$ be a projection and $\dim(X) = n$. Then there is a basis for $X = \Re(P) \oplus \Re(P)$ s.t.

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$$
(Go to TOC)

29. Similarity & Equivalence

Ab hinc: X and Y are vector spaces over F with $\dim X = n$ and $\dim(Y) = m$.

Theorem 61 Let $\mathcal{B}_X = \{e_1, \ldots, e_n\}$ be a basis for X and let $\mathbf{P} = [p_{ij}]$ be an $n \times n$ matrix. Set $e'_k = \sum_j p_{jk} e_j$. Then $\mathcal{B}'_X = \{e'_1, \ldots, e'_n\}$ is a basis for X iff \mathbf{P} is nonsingular.

Pf. Calculation based on the linear independence of \mathcal{B}_X .

Definition 43 Let P be the matrix of Thm 61, then P is the matrix of \mathcal{B}'_X w.r.t \mathcal{B}_X .

Theorem 62 P is the matrix of \mathcal{B}'_X w.r.t \mathcal{B}_X iff P^{-1} is the matrix of \mathcal{B}_X w.r.t \mathcal{B}'_X .

Pf. Exercise.

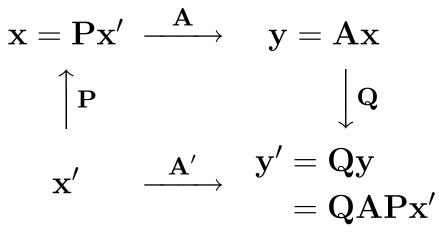
Similarity of Matrices

Theorem 63 Let P be the matrix of \mathcal{B}'_X w.r.t \mathcal{B}_X and Q be the matrix of \mathcal{B}''_X w.r.t \mathcal{B}'_X . Then PQ is the matrix of \mathcal{B}''_X w.r.t \mathcal{B}_X .

Pf. Exercise.

Theorem 64 Let P be the matrix of \mathcal{B}'_X w.r.t \mathcal{B}_X and let $x \in X$ be x in \mathcal{B}_X coordinates. Then $\mathbf{Px'} = \mathbf{x}$ gives x in \mathcal{B}'_X coordinates.

Pf. Exercise.



30. Equivalence of Transformations

Theorem 65 Let $A \in L(X, Y)$ where

- A has matrices $A_{\mathcal{B}_X \to \mathcal{B}_Y}$, and $A'_{\mathcal{B}'_Y \to \mathcal{B}'_Y}$, resp.
- P is the matrix of \mathcal{B}'_X w.r.t. \mathcal{B}_X and Q of \mathcal{B}'_Y w.r.t. \mathcal{B}_Y Then $\mathbf{A}' = \mathbf{Q}\mathbf{A}\mathbf{P}$. Pf.

$$Ae'_{i} = A \cdot \sum_{k} p_{ki}e_{k} = \sum_{k} p_{ki}Ae_{k} = \sum_{k} p_{ki}\left(\sum_{l} a_{lk}f_{l}\right)$$
$$= \sum_{k} p_{ki}\left(\sum_{l} a_{lk}\left[\sum_{j} q_{jl}f'_{j}\right]\right) = \sum_{k} \sum_{l} \sum_{j} q_{jl}a_{lk}p_{ki} \cdot f'_{j}$$

Whence

$$a_{ij}' = \sum_{l} \sum_{k} q_{il} a_{lk} p_{kj}$$

Definition of Equivalence

Definition 44 Two $m \times n$ matrices A and A' are equivalent iff there are nonsingular square matrices P_n and Q_m such that $A' = Q_m \cdot A \cdot P_n$. Equivalence is written as $A' \sim A$.

Theorem 66 Matrix equivalence is an equivalence relation. I.e., \sim is reflexive, symmetric, and transitive.

Pf. Exercise.

Theorem 67 Let A and $B \in \mathfrak{M}_{m,n}$. Then

1. A is equivalent to $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ where $r = \operatorname{rank}(A)$.

2. $A \sim B$ iff $\operatorname{rank}(A) = \operatorname{rank}(B)$.

Equivalence Example

Example 32 Consider
$$A \in L(\mathbb{R}^4, \mathbb{R}^5)$$
.
Suppose $\mathbf{A} = \begin{bmatrix} 7 & -9 & 5 & -4 \\ 7 & 3 & -8 & -5 \\ 4 & 9 & 5 & 6 \\ 11 & 0 & 10 & 2 \\ 0 & 12 & -13 & -1 \end{bmatrix}$ and $\mathbf{A}' = \begin{bmatrix} 1 & 13 & 0 & 12 \\ -21 & -31 & 8 & 6 \\ 13 & 14 & -7 & 15 \\ -1 & 21 & 3 & 0 \\ 11 & -46 & -10 & -21 \end{bmatrix}$
Then $\mathbf{P} = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 1 & 0 & -1 & -1 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ and $\mathbf{Q} = \begin{bmatrix} -1 & 0 & -1 & 1 & -1 \\ 0 & 1 & -1 & -1 & 0 \\ 1 & -1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 1 & 1 \\ -1 & 0 & 0 & -1 & 1 \end{bmatrix}$.

1. Show that $\mathbf{A}' = \mathbf{Q}\mathbf{A}\mathbf{P}$. 2. Find the matrix $\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$ equivalent to both \mathbf{A} and \mathbf{A}' .

31. Determinants: "Work Day"

Exercise. Use an undergraduate text on Linear Algebra to:

- 1. Define the determinant of a matrix.
- 2. List the main properties/theorems on determinants.
- 3. Choose the five most important properties.
- 4. Give a numerical example demonstrating each important property listed.
- 5. Discuss the relation between *determinant* of a matrix and *nonsingularity* of a linear transformation.

32. Determinants & Invariants

Recall the following **Theorem 68** Let $A \in L(X, X)$.

- $|A| \neq 0 \text{ iff } A \text{ is nonsingular}$
- $|A \cdot B| = |A| \cdot |B|$
- $|A^{-1}| = |A|^{-1}$
- $|\alpha A| = \alpha^n |A| \text{ where } n = dim(A)$
- |A| = 0 iff
 - A has a row/column of zeros
 - A has two identical rows/columns
 - A has a row/column that is a linear combination of other rows/columns
 - $A\mathbf{x} = \mathbf{b}$ has nonunique solutions

Eigenvalue & Eigenvector

Definition 45 Let $A \in L(X, X)$. A scalar λ such that there is a nonzero $x \in X$ for which $Ax = \lambda x$ is an eigenvalue and the corresponding x is an eigenvector.

Definition 46 The polynomial $p(\lambda) = |A - \lambda I|$ is the characteristic polynomial of *A*.

Theorem 69 (Cayley-Hamilton) Let $A \in L(X, X)$. Then p(A) = 0. (NB: Also $p(0) = \prod \lambda_i$. See Zhou^a)

Definition 47 Let $A \in L(X, X)$. Then the subspace Y is an invariant subspace under A iff $A(Y) \subseteq Y$; i.e., $\forall y \in Y$, we have $Ay \in Y$.

Definition 48 Set $\mathfrak{N}_{\lambda}(A) = \mathfrak{N}_{\lambda} = \mathfrak{N}(A - \lambda I)$.

^a "Intro. to Symmetric Polynomials & Symmetric Functions"

Reduced Linear Transformation

Theorem 70 Let $A \in L(X, X)$. Then $X, \mathfrak{R}(A), \mathfrak{N}(A)$, and $\{0\}$ are all invariant subspaces under A.

Example 33 Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Then $\{0\}$. $\mathfrak{N}(A) = \langle \begin{bmatrix} 2 \\ -1 \end{bmatrix} \rangle, \mathfrak{R}(A) = \langle \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rangle, \text{ and } \mathbb{R}^2 \text{ are all invariant.}$

Example 34 *(Exercise.)* Let $B : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 2 & 0 \end{bmatrix}$. Then $\{0\}, \mathfrak{N}(B) = \langle ? \rangle, \mathfrak{R}(B) = \langle ? \rangle, \text{ and } \mathbb{R}^3$ are all invariant.

Theorem 71 Let λ be an eigenvalue of $A \in L(X, X)$. Then \mathfrak{N}_{λ} is invariant. (Exercise.)

Definition 49 Let $X = Y \oplus Z$ be such that both Y and Z are invariant subspaces under $A \in L(X, X)$. Then A is reduced by Y and Z and A can take form $\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$.

33. Eigenvalues & Diagonalization

Ab hinc: X is an *n*-dimensional vector space over F.

Theorem 72 Let $\{\lambda_i | i = 1..p\}$ be a set of distinct eigenvalues of $A \in L(X, X)$ with corresponding nonzero eigenvectors $\mathcal{E} = \{e'_i | i = 1..p\}$. Then \mathcal{E} is linearly independent.

Pf. Assume \mathcal{E} is dependent. Choose the smallest set of vectors from \mathcal{E} such that $0 = \sum_{i=1}^{r} \alpha_i e'_i$ (reordering the $r \leq p$ vectors as needed). Then $0 = A(0) = A(\sum_{i=1}^{r} \alpha_i e'_i)$ which gives $0 = \sum_{i=1}^{r} (\lambda_i \alpha_i e'_i)^{(*)}$. Now $0 = \lambda_r 0 = \lambda_r \sum_{i=1}^{r} \alpha_i e'_i$, or $0 = \sum_{i=1}^{r} \lambda_r \alpha_i e'_i^{(**)}$. Subtract ^(*) from ^(**) to obtain $0 = \sum_{i=1}^{r-1} (\lambda_r - \lambda_i) \alpha_i e'_i$ which contradicts r being minimal. Hence \mathcal{E} is linearly independent.

"Eigenbasis"

Theorem 73 If $A \in L(X, X)$ has *n* distinct eigenvalues, then there is a basis of eigenvectors $\mathcal{B}_e = \{e'_i | i = 1..p\}$ such that the matrix of *A* is $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Pf. Exercise.

Corollary 74 If $A \in L(X, X)$ has *n* distinct eigenvalues, then every matrix for *A* is similar to a diagonal matrix.

Pf. Collect the eigenvectors $\mathcal{E} = \{e'_i | i = 1..n\}$. Set $P = [e'_1, \ldots, e'_n]$. Then $\operatorname{diag}(\lambda_1, \ldots, \lambda_n) = P^{-1}AP$.

Example 35 See the Maple worksheet. (To see what happens
without a "cooked" example, enter the following in Maple: with(LinearAlgebra):
A := RandomMatrix(5,5, generator=rand(-3..3)); Eigenvectors(A);)

34. "Eigen-Basis" Examples

Example 36

- 1. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in L(\mathbb{R}^3, \mathbb{R}^3)$. Then $p(\lambda) = \lambda^3 2\lambda^2 + \lambda$ (and $m(\lambda) = \lambda^2 - \lambda$) which indicates that A has eigenvalues: 0, 1, 1. The corresponding eigenvectors come from $\mathfrak{N}_{\lambda} = \mathfrak{N}(A - \lambda I)$. So $\mathfrak{N}_0 = \langle \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \rangle$ and $\mathfrak{N}_1 = \langle \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \rangle$. (Found by solving $\begin{bmatrix} 1-\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$ with $\lambda = 0$ and 1, respectively.)
 - (a) Define P and find P^{-1} .
 - (b) Calculate the diagonal matrix $P^{-1}AP$ without using matrix multiplication.

"Eigen-Basis" Examples, II

Example 37

- 1. Let $B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \in L(\mathbb{R}^3, \mathbb{R}^3)$. Then $p(\lambda) = \lambda^3 3\lambda^2$ (and $m(\lambda) = \lambda^3 3\lambda^2$) which indicates that B has eigenvalues: 0, 0, and 3. The corresponding eigenvectors come from $\mathfrak{N}_{\lambda} = \mathfrak{N}(B \lambda I)$. So $\mathfrak{N}_0 = \langle \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \rangle$ and $\mathfrak{N}_3 = \langle \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \rangle$. (Found by solving $\begin{bmatrix} 1-\lambda & 1 & 2 \\ 1 & 1-\lambda & 2 \\ 1 & 0 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$ with $\lambda = 0$, and 3, respectively.)
- (a) Explain why P (and so P⁻¹) doesn't exist.
 (b) Can B be diagonalized? Why or why not?
 (Solution.)

35. Geometric Multiplicity

Definition 50 Let λ be an eigenvalue of $A \in L(X, X)$. Then

- the algebraic multiplicity of λ is the multiplicity as a root of the characteristic polynomial $p(\lambda)$;
- the geometric multiplicity of λ is the dimension of the nullspace $\mathfrak{N}_{\lambda} = \mathfrak{N}(A \lambda I)$.

Example 38 Let $X = \mathbb{R}^3$. Each matrix below has characteristic polynomial $p(\lambda) = -(\lambda - 2)^3$.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
$$alg = 3, geo = 3 \quad alg = 3, geo = 2 \quad alg = 3, geo = 1$$
$$iev = \{e_1, e_2, e_3\} \qquad iev = \{e_1, e_3\} \qquad iev = \{e_1\}$$

Reduction Partition

Theorem 75 Let $X = X_1 \oplus X_2$ be a direct sum that reduces $A \in L(X, X)$; i.e., A is invariant on X_1 and X_2 . Then there is a basis \mathcal{B} for X such that

$$A_{\mathcal{B}} = \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix}$$

Theorem 76 Let $X = X_1 \oplus \cdots \oplus X_p$ be a direct sum that reduces $A \in L(X, X)$; i.e., $A_k = A|_{X_k}$ is invariant on X_k for k = 1..p. Then there is a basis \mathcal{B} for X such that

$$A_{\mathcal{B}} = \begin{bmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_p \end{bmatrix}$$

and $|A_{\mathcal{B}}| = \prod_{k=1}^{p} |A_k|$

Minimal Polynomial

Example 39 If $A \in L(X, X)$ has *n* distinct eigenvalues in *F*, then $X = \mathfrak{N}_{\lambda_1} \oplus \cdots \oplus \mathfrak{N}_{\lambda_n}$ and $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Definition 51 Let $A \in L(X, X)$. Then there is a monic polynomial $m(\lambda)$, the minimal polynomial, such that

- m(A) = 0
- any polynomial m' with m'(A) = 0 has $\deg(m) \le \deg(m')$

Example 40 The three matrices of Example 38 have

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
$$m(\lambda) = (\lambda - 2)^2 \qquad m(\lambda) = (\lambda - 2)^3$$

Properties of the Minimal Polynomial

Theorem 77 The minimal polynomial $m(\lambda)$ is unique.

Theorem 78 Let $q(\lambda)$ be a polynomial such that q(A) = 0. Then $m(\lambda) | q(\lambda)$.

Corollary 79 The minimal polynomial divides the characteristic polynomial; i.e., $m(\lambda) | p(\lambda)$.

Theorem 80 The characteristic polynomial divides a power of the minimal polynomial: $p(\lambda) \mid [m(\lambda)]^n$ where $n = \dim(X)$.

Corollary 81 $m(\lambda) | p(\lambda) | [m(\lambda)]^n$.

Proofs. Exercises.

36. Jordan Canonical Form

Definition 52 Let $A \in L(X, X)$. If there is a power k such that $A^k = 0$, but $A^{k-1} \neq 0$, then A is nilpotent of index k.

NB: For a nilpotent matrix A of index k, $m_A(\lambda) = \lambda^k$.

Definition 53 Define $N_k \in \mathfrak{M}_{k \times k}$ to be

$$N_k = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

Then N_k is nilpotent of index k.

Definition 54 Define $J_k(\lambda_i) = N_k + \lambda_i I$. The matrix $J_k(\lambda_i)$ is a Jordan block.

Jordan Blocks

Theorem 82 Let $J_k(\lambda_i)$ be the Jordan block matrix of size k (with eigenvalue λ_i). Then

•
$$p(\lambda) = (\lambda - \lambda_i)^k$$

•
$$m(\lambda) = (\lambda - \lambda_i)^k$$

Pf. Consider $J_k(\lambda_i) - \lambda I$. For $\lambda = \lambda_i$, we see

$$J_k(\lambda_i) - \lambda_i I = N_k$$

which is nilpotent of index k. Hence $p(\lambda) = (\lambda - \lambda_i)^k$. Since $m \mid p$ and no lower power of N_k than k gives 0, it follows that we also have $m(\lambda) = (\lambda - \lambda_i)^k$.

Jordan Form

Theorem 83 Let $A \in L(X, X)$ with $p(\lambda) = \prod_{i=1}^{r} (\lambda - \lambda_i)^{n_i}$ and $m(\lambda) = \prod_{i=1}^{r} (\lambda - \lambda_i)^{m_i}$

Then there is a block-diagonal matrix for A with blocks $J(\lambda_i)$. For each λ_i the blocks $J(\lambda_i)$ have the properties:

- 1. There is at least one block $J_{m_i}(\lambda_i)$; all others have order $\leq m_i$.
- 2. The sum of the orders of the blocks for $J(\lambda_i)$ is n_i .
- 3. The number of blocks $J(\lambda_i)$ equals the geometric multiplicity of λ_i .
- 4. A uniquely determines the number of blocks $J(\lambda_i)$.

JCF Example, I

Example 41 Let $A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. (A is not diagonalizable.) First $p(\lambda) = (4 - \lambda)(1 - \lambda)^3$. Hence, $m(\lambda) = (4 - \lambda)(1 - \lambda)^k$ where k = 1, 2, or 3. Testing, we determine that $m(\lambda) = (4 - \lambda)(1 - \lambda)^2$. Thus there are Jordan blocks $J_1(4)$ and $J_2(1)$ from the factor powers in $m(\lambda)$. Since the sum of the block's indices must be 4, the last block is $J_1(2)$. We have determined that

$$JCF(A) = \operatorname{diag}(J_1(4), J_2(1), J_1(1)) = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now we compute the transition matrix P that converts $JCF(A) = P^{-1}AP$. The first eigenvalue 4 has one independent eigenvector: $\mathfrak{N}_4 = \langle [1, 1, 1, 0]^T \rangle$. The second

JCF Example, II

Example 41 (continued) eigenvalue 1 has geometric multiplicity 2; i.e., dim $(\mathfrak{N}_1) = 2$, and has only 2 independent eigenvectors. $\mathfrak{N}_1 = \langle [0, 0, 0, 1]^T, [1, 1, -2, 0]^T \rangle$. We need another independent vector for *P*. Set $\mathfrak{N}_{1,2} = \mathfrak{N} ((A - 1I)^2)$ $= \langle [0, 0, 0, 1]^T, [-3, 0, 1, 0]^T, [-5, 1, 0, 0]^T \rangle$. Let $N_\lambda = A - \lambda I$, then $x_1, x_2 = N_1 x_1, \ldots, x_j = N_1 x_{j-1}$ can form an independent chain of vectors. Try $x_1 = [-5, 1, 0, 0]^T$, then $x_2 = N_1 x_1 = [2, 2, -4, 0]^T$ and $x_3 = N_1 x_2 = 0$. We have 4 independent vectors with which to construct *P*.

$$P = [\mathfrak{N}_4[1], \mathfrak{N}_1[1], x_2, x_1] = \begin{bmatrix} 1 & 0 & 2 & -5 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & -4 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = P^{-1}AP$$

37. JCF Examples

We will consider a 3×3 matrix A over \mathbb{R} ; i.e., $A \in L(\mathbb{R}^3, \mathbb{R}^3)$. **Example 42** Let $A = \begin{bmatrix} 4 & 4 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$. The characteristic polynomial is $p(\lambda) = (4 - \lambda)(2 - \lambda)^2$. The minimal polynomial is found to be the same: $m(\lambda) = (4 - \lambda)(2 - \lambda)^2$. We can directly write the Jordan canonical form $JCF(A) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. (Explain why.) We construct the transition matrix P from eigen- and generalized eigenvectors. Set $N_4 = (A - 4I)$. The nullspace of N_4 is $\langle [1, 0, 0]^T \rangle$. Set $v_1 = [1, 0, 0]^T$. Now consider $N_2 = (A - 2I)$. The nullspace of N_2 is $\langle [-2, 1, 0]^T \rangle$. This space is "too small," since the algebraic multiplicity of $\lambda = 2$ is 2. Consider $N_{2,2} = (A - 2I)^2$. The nullspace of $N_{2,2}$ is $\langle [-2,1,0]^{\mathrm{T}}, [-9/2,0,1]^{\mathrm{T}} \rangle$. Set $x_2 = [-9/2,0,1]^{\mathrm{T}}$. This choice

JCF Examples, II

Example 42 (continued) gives $x_2 \in \mathfrak{N}(N_{2,2}) - \mathfrak{N}(N_2)$, and then define $x_1 = N_2 x_2 = [-8, 4, 0]^{\mathrm{T}}$. Let *P* be the matrix $[v_1, x_1, x_2]$. Then

$$P = \begin{bmatrix} 1 & -8 & -9/2 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } P^{-1} = \begin{bmatrix} 1 & 2 & 9/2 \\ 0 & 1/4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Whence

$$JCF(A) = P^{-1}AP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

JCF Finite Field Example

We will consider the same 3×3 matrix A, but now over \mathbb{Z}_5 ; i.e., $A \in L(\mathbb{Z}_5^3, \mathbb{Z}_5^3)$. Proceed as before, but calculate in \mathbb{Z}_5 . **Example 43** Let $A = \begin{bmatrix} 4 & 4 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$. The characteristic polynomial is $p(\lambda) = (4 - \lambda)(2 - \lambda)^2$. The minimal polynomial is found to be the same: $m(\lambda) = (4 - \lambda)(2 - \lambda)^2$. We can directly write the Jordan canonical form $JCF(A) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. (Explain why.) We again construct the transition matrix *P* from eigen- and generalized eigenvectors. Set $N_4 = (A - 4I) = (A + 1I)$ mod 5. The nullspace of N_4 is $\langle [1, 0, 0]^T \rangle$. Set $v_1 = [1, 0, 0]^T$. *Now consider* $N_2 = (A - 2I) = (A + 3I) \mod 5$. *The null*space of N_2 is $\langle [3, 1, 0]^T \rangle$. This space is "too small," since the algebraic multiplicity of $\lambda = 2$ is 2.

JCF Finite Field Example, II

Example 43 (continued) Consider $N_{2,2} = (A - 2I)^2$ = $(A + 3I)^2 \mod 5 = \begin{bmatrix} 4 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. The nullspace of $N_{2,2}$ is $\langle [3, 1, 0]^{\mathrm{T}}, [3, 0, 1]^{\mathrm{T}} \rangle$. Set $x_2 = [3, 0, 1]^{\mathrm{T}}$ as this choice gives $x_2 \in \mathfrak{N}(N_{2,2}) - \mathfrak{N}(N_2)$, and then define $x_1 = N_2 x_2 = [2, 4, 0]^{\mathrm{T}}$. Let *P* be the matrix $[v_1, x_1, x_2]$. Then

$$P = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad P^{-1} = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Whence

$$JCF(A) = P^{-1}AP = \begin{bmatrix} 4 & 40 & 25 \\ 0 & 32 & 16 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \mod{5}.$$

JCF Exercise

Exercise. Set
$$A = \begin{bmatrix} 0 & -1 & 0 & 2 \\ -1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$
.

Find

- 1. $p(\lambda)$
- **2.** $m(\lambda)$
- 3. the transition matrix P
- **4.** *JCF*(*A*)

The End