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1. Algebraic Structures

N o .

Definition 1 A Group is a pair {X; -} such that
1. “”is closed on X.
2. “”Is associative on X.
3. Thereis anidentity e € X (w.r.t. “.").
4. Every element ¢ € X has an inverse ¢~ ! (w.r.t. “").

Definition 2 A Ring is a triple {X; +, -} such that
1. {X;+} is an Abelian group.
2. {X;-}Is asemigroup (lacks identity and inverses).
3. “" distributes over “+”.

o -
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Algebraic Structures

-

Definition 3 A Field is a triple {X; +, -} such that
1. {X;+, -} Isaring.
2. {X7;.} is an Abelian group where X# = X — {0}.

=

Definition 4 A Vector Space is an Abelian group {X; +}
over a field { F'; +, -} with a scalar product F' x X — X. For
a,0€ Fand z,y € X,

1. a(z+y) =ar+ ay
2. (a+ pP)x =ax+ fx

3. (af)z = a(fx)
4, lz ==

o -
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Field

fDefinition 3 (Field) Let F' # () be a set with addition T
“+":.X x X — X and multiplication “.":F' x X — X. Then {F;+,-}
with the operations forms a field if the following axioms are satisfied:

l. 24+y=y+zx, x-y=y-x commutative laws
e+ (y+z2)=(r+y)+z z-(y-2) = (x-y)-zassociative laws

. d unique element 0 satisfying 0 + x = x additive identity

. There is a unique element 1 satisfying 1 - =« mult. identity

. To each z # 0, 3 a unique z~! so that z - z=! = 1 mult. inverse

.- (y+z)=x-y+x-z " over “+” distributive law

o -
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4. To each z, 3 a unique —z so that z 4+ (—z) = 0 additive inverse
S
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N o O K~ WDdhPE

Examples of Fields

Q, R, and C are fields.
Z 1s not a field. (Why?)
Let p be a prime. Then Z, Is a p-element field.

Q[v2]={a +bv2]| a,b € Q} is a field.
Z[V2]={a+bv2|a,be Z} is not afield. (Why?)
Q[V3] ={a+ b3+ cV3%| a,b,c € Q} is afield.

Z,li], p is prime, is a field (with p* elements).

-

Intro to Linear Alaebra MAT 5230 — p. 9/



Vector Space

fDefinition 4 (Vector Space) Let X # () be a set (vectors) and ' be a T
field (scalars) with vector addition “4+":X x X — X and scalar
multiplication “”:F' x X — X. Then X and F' with the operations forms a
vector space (or linear space), “X is a vector space over F'.” if the
following axioms are satisfied:

1.

© N o 0o B~ W DN

r+y=y-+zx commutative law
v+ (y+z2)=(r+y)+=z associative law

There Is a unique vector 0 satisfying 0 + z = x ‘zero vector, identity

alz+y) = ar + ay scalar “-" over vector “+” distributive law
(a+ B)r = ax + Pz scalar “+” over scalar “.” distributive law
(afB)r = a(Bz) scalar homogeneity
Oz =0 scalar-vector additive identity relation (implied by 5.)

lx =x scalar-vector multiplicative identity reIationJ

Intro to Linear Alaebra MAT 5230 — p. 10/



Examples of Vector Spaces

=

. Letn € Z*. Then Q", R", and C" are vector spaces.

. Letn € Z*. Then P", the polynomials (real or complex) of
degree less than or equal to n, forms a vector space.

. Zo X 7o X Zso IS a vector space.
. Let F be afield and n € Z*. Then F™ is a vector space.

. Let M,,«,, be the m x n matrices with entries in a field F' with
componentwise addition and scalar multiplication.

. Let K C R be aclosed interval. Then C(K), the continuous
real-valued functions on K form a vector space.

. Let O C R be an open interval. Then C*(0O), the continuously
differentiable real-valued functions on O, form a vector space. J
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Homomorphisms

-

Definition 5 (Group Homomorphism) Let {X;+x} and
{Y;+y} be two groups with p: X — Y. Thenpisa
homomorpism iff

=

p(z1 +x x2) = p(z1) +v p(x2)

Definition 6 (Ring Homomorphism) Let {X;+x, -x} and
{Y:4+y,v} betworingswith p: X — Y. Then pis a
homomorpism iff

p(z1 +x x2) = p(z1) +v p(x2)

p(x1-x x2) = p(x1) 'y p(x2)

o -
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Vector Space Homomorphism

=

fDefinition 7/ (Linear Transformation) Let X and Y be
vector spaces over the same field . Then the relation
p: X — Y Is alinear transformation if and only if for every
ac Fand zy, 29 € X, It follows that:

p(x1 +x x2) = p(z1) +v p(x2) (1)

plac- 1) = a - p(ar) (2)

o -
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L iInear Transformation

d 7| @)

a, 1] — o T
S
: a-T1) —
[O{ p($1)] - o /0(371)

(Goto TOC)




2. Properties of Finite Fields
-

Theorem 1 Z, is a field if and only if p Is prime. T

Theorem 2 Let p be a prime and n € Z™. Then there exists
a finite field F with p™ elements.

Theorem 3 For any prime p and n € Z*, there is
(essentially) only one field with p™ elements.

(The splitting field of zP" — 2 over the field Z,.)

o -

Intro to Linear Alaebra MAT 5230 — p. 15/



°

References

=
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4. Properties of Vector Spaces

- .

Theorem 4 Let X be a vector space over the field F. Let
r,y,z€ X and o, 8 € F. Then

If ax = ay and a # 0, then x = y;
If ax = Sz and = # 0, then a = [
fz+y=2a+ 2z theny = z;
a-0=0;

alr —y) = axr — ay where —y 2 (—1) - v;

(a = B)r = ax — fz;
r +y = 0Implies that x = —y.

L - A

o -
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More Examples of Vector Spaces
fSequence Vector Spaces T
$» R and C*=
Finitely non-zero real (or complex) sequences
Null real (or complex) sequences

Bounded real (or complex) sequences

e o o o

Convergent real (or complex) sequences

Function Vector Spaces
® P = {polynomials with real (or complex) coefficients}
® C(la,b))=Af]|f:]a,b — Ris continuous} over R
® Li([a,b]) ={f] [, |f(1)|dt < oo} over R

\— (Goto TOC) J

Intro to Linear Alaebra MAT 5230 — p. 18/




5. Homomorphisms

-

Definition 5 (Group Homomorphism) Let {X;+x} and
{Y;+y} be two groups with p: X — Y. Thenpisa
homomorpism iff

=

p(z1 +x x2) = p(z1) +v p(x2)

Definition 6 (Ring Homomorphism) Let {X;+x, -x} and
{Y:4+y,v} betworingswith p: X — Y. Then pis a
homomorpism iff

p(z1 +x x2) = p(z1) +v p(x2)

p(x1-x x2) = p(x1) 'y p(x2)

o -
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Vector Space Homomorphism

fDefinition 7/ (Linear Transformation) Let X and Y be

=

vector spaces over the same field . Then the relation
p: X — Y Is alinear transformation if and only if for every

ac Fand zy, 29 € X, It follows that:

p(x1 +x x2) = p(z1) +v p(x2)

plac- 1) = a - p(ar)

Examples

1. Set¢:R? — R* by ¢(z,y) = (2,0,0,7).
L 2. Sety:R? = Cbyy(z,y) =z +1iy.

(3)

(4)

-
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L iInear Transformation

d 7| @)

a, 1] — o T
S
: a-T1) —
[O{ p($1)] - o /0(371)

(Go to TOC)



6. Subspace of a Vector Space

fDefinition 8 (Subspace) Let X be a vector space over F' and let T
0D +#V C X. ThenV is a subspace of X iff

1. Vu,v e V,wehave u+v eV (closed under addition)

2. Yae F,Yu e V,we have au € V (closed under scalar mult.)

Theorem 5 A subspace of a vector space is itself a vector space.

Proof. Let V be a subspace of X. V is closed under vector addition
and scalar multiplication by definition. All remaining vector space
properties — with the exception of 0 € V — are inherited from X.
Letv € V (because V #£ (). Since 0 € F,then0v=0¢ V. Thus V
IS a vector space. [

LNote. Every vector space has at least 2 subspaces. What are they? J
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Examples of Subspaces

- .

# {0} and X are always subspaces of X

® R?is a subspace? of R?, C? is a subspace of C’.
# Form < n, we have that R is a subspace of R"
# Form < n, we have that P™ is a subspace of P"
o

IS

s Vi ={(z,1)|z,y € R} a subspace of R*?

s Vo={(z,y,2 +9,0)| 2,y € R} asubspace of R*?

s Vs={(z,y,x+y+2,0)|z,y € R} asubspace of R*?

@ Thinking of R? as a subset such d&r,y,0) |,y € R}, &c., of R,
\—Formally,R2 is isomorphic to a subspace R¥f. J

(Goto TOC)

Intro to Linear Alaebra MAT 5230 — p. 23/



Is This a Subspace?




Is This a Subspace?

(Go to TOC)



/. Operations with Subspaces

=

fTheorem 6 Let X be a vector space over F' and let V; and
V5 be subspaces of X. Then V = V; N V4 Is a subspace.

Pf. (Exercise.)

Theorem 7 Let X be a vector space over F' and let X; for
i € I be subspaces of X where I is some index set. Then

V = ()X is a subspace.
icl

Pf. (Easy closure calculations.)

NB: Unions (usually) or complements of subspaces do not
form new subspaces.

o -
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Direct Sum

- .

Definition 9 (Direct Sum) Let X, Xo,..., X, be
subspaces of X. The set X; + X5 + - - - + X,. forms the direct
sum X; & Xo & --- ¢ X, Iff for every x In the sum, there Is a

X
unique set of x; € X; such that z = Za;z
1=1

Theorem 8 X; + Xy = X1 @ Xe ifand only if X; N Xe = {0}.

Pf. Basedon: Let0 A#ve XiNXs. Thenv=v+0=0+wv IS
two different ways to write v.

Note. X; + X5 Is a subspace; X; & X, is a subspace that
‘looks like’ a direct product.

o -
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Subspaces oR? and R’
—

Example 1 Set X = R?. Let X; be given by the line y = =
and X5 by the line y = —x. Then

{0l=X1NXy C XjUXy C X1+Xo = X;P Xy =R?
subsp —subsp subsp

Example 2 Set X = R3. The subspaces of R are:
» {0}
# Aline L through the origin.

# The direct sum of two distinct lines through the origin
L1 & Lo yields a plane.

# The direct sum of three distinct non-coplanar lines
~ through the origin L; & Ly ® L3 yields R?, o

(Go to TOC)
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8. Linear Combinations

;. .

Note: From now on, «;, etc., will be elements of the base
field £ and x;, y;, etc., will be vectors from the space X.

Definition 10 (Finite Linear Combination) LetY C X. A
vector z € X Is a (finite) linear combination of vectors in Y
Iff there Is a finite set of vectors {y;} C Y and scalars {«;}

such that
n
v = i
1=1

Note: The sum is not required to be unique. (Unlike ¢.)

Example 3 LetY = {(1,0),(1,1),(0,1)} c R Then the
vector x = (2,3) can be written as = = 2(1,0) + 3(0,1) or as
r=2(1,1)+1(0,1) oras x = —1(1,0) + 3(1, 1).

o -
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Generated Subspace & Span
-

Theorem 9 Let) #Y C X. Define T

V(Y) 2 {all linear combinations from Y}

Then V(Y) is a subspace of X and is called the subspace
generated by Y.

Definition 11 (Span) Y spans X ifandonly if V(Y) = X.

Example 4 LetY = {(1,0),(1,1),(0,1)}. Then Y spans R?.
(Exercise.)

Example 5 Let 7 = {(1,1,0),(1,0,1),(0,1,1),(1,1,1)}.
Does the set Z span R3?

o -
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Dependence and Independence

-

Definition 12 (Linear Dependence) Let{zi,z2,..., 2}
be a nonempty subset of X. If there exists a set of scalars
{a;}, not all zero, such that ayx1 + asxo + -+ + apmxy, = 0,
then {z1,29,...,2,} IS linearly dependent.

=

Definition 13 (Linear Independence) If the nonempty
subset {z,x9,...,z,} Of X Is not linearly dependent, then
{x1,29,..., 2} IS linearly independent.

Example 6 Y and Z from the previous examples are both
linearly dependent.

Example 7 Let W = {(1,1,0),(1,0,1),(0,1,1)}. Then W Is
linearly independent.

o -
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More Examples

=

fExample 8 LetV =4{(1,1,0,0),(1,0,1,0),(1,1,1,0)}. IsV
linearly independent? Does V span R*?

Example 9 LetU = {(0,0,0),(1,0,0),(0,1,0)}. Is U linearly
Independent?

Example 10 LetP = {1,z,2% 2°,...}. Then V(P) = P, the
set of all real polynomials; i.e., P spans P. Is P linearly
iIndependent? Yes! But how do we show this? Consider

n
p(x) = Z a;r; =0
1=0

and note that the only nth degree polynomial with n + 1

uOOtS, IS p(x) = 0. J

(Goto TOC)
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9. Linear Independence
-

Theorem 10 (Uniqueness) LetY ={xy,22,...,2} De a
linearly independent set of vectors. If > ", cja; = >0 By,
then o; = 3; for i = 1..m.

Pf. Simple calculation.

=

Theorem 11 A set Y is linearly dependent if and only if
some vector z € Y can be written as a linear combination of
other vectors in Y.

# Add any number of vectors to a dependent set, it will
still be dependent.

# Add one vector to an independent set, it may or may
not stay independent.

o -
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Infinite Example

o .

Example 11 LetP = {1,z,2% 2°,...}. Then V(P) = P, the
set of all real polynomials; i1.e., P spans P. Is P linearly
iIndependent? Yes! But how do we show this? Let p(x) € P.

Then, for some n,
n
p(x) = Z a;x; = 0.
i=0

Note that the only nth degree polynomial with n + 1 roots, Is
p(x) = 0. Hence all «; are 0.

o -
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Unigue Expression

-

Theorem 12 (Uniqueness of Expression) A finite
nonempty set Y is linearly independent if and only if, for
each nonzero y € V(Y), there exists a unique subset
{z1,...,z,} Of Y and a unique set of scalars {aq,...,ap}

suchthaty = >, a;.

=

Assignment

1. Prove Theorem 11

2. Prove Theorem 12

Theorem 13 Y is linearly independentifandonly if Z C Y
implies V(Z) # V(Y).

Pf. Exercise.
| -
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Basis of a Vector Space

- .

Definition 14 ( Hamel basis ) A (finite) setY C X Is a
Hamel basis (or just a basis) if and only if

1. Y is linearly independent
2. V(Y)=X
Id est, Y is a (finite) linearly independent spanning set.

Theorem 14 If Y is linearly independent, then Y is a basis
for V(Y).
Pf. Exercise.

Note: The theorem Every vector space has a basis is a
result of the Axiom of Choice.

L (Go to TOC) J
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http://mathworld.wolfram.com/HamelBasis.html

10. Basis of a Vector Space

fRecall: T

Definition 15 (Hamel Basis) AsetY C X is a Hamel
Basis (or just a basis) if and only if

1. Y is linearly independent
2. VY)=X

Note: The theorem «Every vector space has a basis» Is a
result of the Axiom of Choice.

Exempli gratia
® {(0,1),(1,2)} is a basis of R?
® {(1,1,0),(1,0,1),(0,1,1)} is a basis of R?
L o {(1,1,0),(1,2,0),(2,1,0)} is not a basis of R? J
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Basis Properties

=

fTheorem 15 (Uniqueness of Scalars) Let {zy,zo,...,2,}
be a basis for X. Then for each vector x € X, there is a
unique set of scalars {ay, as, ..., ay} such that

T = Q1T+ ax + -+ Qaply
Pf. Standard calculation.

Theorem 16 (Maximum Independent Set Size)  Suppose
that B = {x1,29,...,x,} 1S @ basis of X with n finite and

Y ={y1,92,...,ym} IS @ set of linearly independent vectors.
Then m < n.

Note: n Is finite IS necessary.

o -
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N o Ok w

Proof Outline .
1.
2.

Proof of Theorem 16 - Outline
-

Assume m > n.

Write y; as a linear combination of the z;. At least one
coefficient can’t be O, say the coefficient of x,, (reindex
x’s If necessary).

Replace z,, In B with y;. Show B still is a basis for X.
Start over with y» and the “new” B. Replace x,,_1 by 5.
Continue the process until y,, replaces ;.

B - still a basis - now is {y1,y2,...,Yn}-

Thus y,,+1 can be written as as linear combination from
B contradicting the linear independence of Y. Hence

m < n. J
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Dimension

-

Theorem 17 If B ={x1,xs,...,xx} IS @ basis of X for

some N < oo, then every basis of X contains exactly N
vectors.

=

Pf. e Let B; be a basis with n vectors and B, be a basis
with m vectors.

e Apply Theorem 16 with B; as the basis and B, as the
linearly independent set. Therefore m < n.

e Now apply Theorem 16 with B, as the basis and B; as the
linearly independent set. Therefore n < m.

e Since m < n and n < m, it follows that m = n.

L (Go to TOC) J
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11. Dimension of a Vector Space

-

Definition 16 (Dimension) If X has a finite basis of n
vectors, then X is finite dimensional and has dimension
dim(X) = n. If X is not finite dimensional, then X has
infinite dimension and dim(X) = oo.

=

Example 12 Several standard spaces:
® dim(R™) =n
® dim(P")=n+1

® dim(R*) =00 The space of real sequences is large
(but it's a “small ")

® dim(P) =00 (another “small co,” Isomorphic to R*)

o -
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Examples

-

Example 13 Infinite dimensional spaces

=

® dim(C|0,1]) = oo The space of continuous functions on
0,1] is very large (a “big oc”)

® dim(B(R)) = oo with B(R) = {bounded real functions }

# |s the following true:
Let Z be an arbitrary set and X an arbitrary vector
space over F'. The space of all functions from Z to X,

written X7, is a vector space over F with dimension
dim(X%) = dim(X)?

o -
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e

9o

9
9
9

°

L..

asis Facts

Basis & Dimension Facts

=

Every vector space has a basis (requires the Axiom of Choice)
Every linearly independent set can be extended to a basis
A linearly independent set can be no larger than a basis

A set containing more vectors than a basis must be linearly
dependent

Any two bases for a vector space contain the same number of
vectors (finite dimensional case)

If X has a set with n linearly independent vectors and every
set of n 4 1 vectors is dependent, then dim(X) = n

If Y is a subspace of X, then dim(Y) < dim(X). J
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“Two Out of Three Ain't Bad”

- .

Theorem 18 Suppose X is a vector space with dim(X) =n
and Y C X. If any two of the following hold, then the third
also holds.

1. Y spans X
2. Y Is linearly independent
3. Y contains exactly n vectors

Theorem 19 Suppose that dim(X) < oo and that
X =Y ®Z. Then dim(X) = dim(Y) + dim(2).

Nota Bene : Recall that ¢ Is the “interior analogue” of x and
thatif X =Y x Z, then dim(X) = dim(Y) x dim(Z).

o -
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“Sum of Dimensions” Proof

fProof of Theorem 19 (3.3.43) . T
Since dim(X) < oo, so are dim(Y') and dim(Z). Therefore there
are basesof Y and Z: By = {y1,...,yntand Bz = {z1,...,2m }.
Set B= By UBy. Let

n m
0=> awi+ Y Bz
i=1 i=1

be a linear combination from B. Since representation of vectors is
unique in X =Y & Z, we have that 0 = > ", o;y; and

0=> ", Bz Therefore 0 = a; = §; for all i and j as By and 5
are independent. l.e., B is linearly independent.

Since X =Y & Z, itis clear that B spans X. Hence,

UB\:ner:dim(X). J

(Go to TOC)
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12. Subspaces and Direct Sums
-

fThe theorem Every linearly independent set can be extend-
ed to a basis has:
Corollary 20 Suppose X is an n-dimensional vector space
with an m-dimensional subspace Y. Then there exists a
subspace 7 of dimension (n —m) such that X =Y + Z.

Pf. (Sketch) Take bases
By for X and By for
Y. Eliminate the por-
tion of Bx dependent on
By . The remaining vec-
tors form a basis for Z.

Note: ~Z need not be

L unique. (Z=red or blue) J
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Linear Transformations

=

fDeﬁnition 17 (Linear Transformation) A mapping 1" from
a vector space X into a vector space Y, both spaces over
the field F is a linear transformation, writtenas 7' € L(X,Y),
ifandonlyifforallz € X,y € Y, and a € F, we have

1. T(x+y)=T(z) + T(y)
2. T(ax) = ol (z)
A nonlinear transformation is a mapping that is not linear.

Theorem 21 (Superposition Principle) T € L(X,Y) if and
only if

T <Z Ckzwz') = Z Ckz'T (.fz)
1=1 1=1
. o
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Examples of Linear Transformations

. .

xample 14
® T:R? = R2by T([z,y]) = [22 + 3y, z — 1]
T:R?— R by T([z,y]) = []
d

D:P* —P* by D(p) = 4 p(z)

[:Cl0,1] —=Rby I(f) = [, f(t)dt
Let k € Cla, b] x Cla, b] such that for any x € C|a, 0],

o o o ©

b
z(s) = / x(t)k(s,t)dt € Cla, ]

Then ~: Cla,b] — Cla, b] Is a linear transformation.?

L Fredholm Integral Equatioaf the First Typeor a kernel transform J
(Goto TOC)

Intro to Linear Alaebra MAT 5230 — p. 48/


http://mathworld.wolfram.com/FredholmIntegralEquationoftheFirstKind.html

13. Examples of Linear Transformations
. o

xample 15

o letLf={f:R—-C|feCR)and [;|f] <oo}. Now
define the Fourier transform F(f) € L£{ by

F(£)s) = [ e at
Then F: £{ — L] Is a linear transformation.

® Letz e C. Then z = (the complex conjugate of z) is a
nonlinear transformation.

® Let|-| be the absolute value functionon R. Is |- | a
linear transformation from R to R?

o -
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Null Space and Range Space
-

Definition 18 LetT € L(X,Y). Then the
1. null space N (T) (or kernel ker(T")) is the set

=

N(T) = {z € X | T(x) = 0},
2. range space R(T') (or image space) is the set
R(TY={yeY |y=T(x)forsomez € X} =T(X).
Theorem 22 LetT € L(X,Y). Then

1. NM(T) is a subspace of X,
2. R(T) Is a subspace of Y.

LPf. Exercise (3.4.20) J
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Range & Dimension

-

Theorem 23 If T € L(X,Y), then dim(R(7T)) < dim(X).

=

Pf. Assume X # {0} # R(T), otherwise the result is trivial.
Setn =dim(X) > 0. Choose {y1,...,yns+1} C dim(R(T)).
For each ¢, find z; such that T'(x;) = y;. Since dim(X) = n,
we know that there are scalars «a; so that

a1T1+ -+ apn1Tpy1 =0
Applying 7' to this linear combination yields

oa1yr + -+ apt1Yn+1 =0

Since the y; were arbitrary, every subset of dim(R(7")) with
Ln + 1 vectors is linearly dep. Thence dim(R(T")) < n. J

(Go to TOC)
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14. The Dimension Theorem

-

Theorem 24 The inverse image of a basis under a linear
transformation is linearly independent. l.e., Let T € L(X,Y)
and let By = {y;}. For each ¢, choose an z; such that

T(x;) = y;. Then the set {x;} Is linearly independent.

Pf. Exercise (3.4.24)

=

Theorem 25 (The Dimension Theorem) LetT € L(X,Y)
with dim(X) < co. Then

dim(R(T)) + dim(N(T)) = dim(X).

Pf. Set dim(X) =n and dim(N(T)) = sand setr =n — s.
(Need to show: dim(R(T)) =r =n — s.)

o -
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The Dimension Theorem Proof

=

fPf. Find a basis for A/(T') labeling the vectors {ey, ..., es}.
Extend this set to a basis for X by adding r vectors to have
B={x,...,xz,,e1....,es}. Since B is a basis, then T'(B)
spans R(T). Since T'(e;) =0, then T'({x1,...,x,}) Spans
R(T). Sety; =T (x;); SO {y1,...,yr} spans R(T).
Suppose a linear combination ayy; + - - - + o,y = 0. Then
because ) . «o;T(x;) =T(>_, a;z;), we have that
> oz € N(T), thus > oz = ), vie; Which can be
written as

a1r1 + -+ pry — 1€ — 0 — Yses = 0

which implies each «; = 0. Hence dim(R(T)) = r.

— What about the cases s = 0 and n? (Group-Project time!)
L (Goto TOC) J
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“Your Turn”

The Setup . Define D : R* — R* by

D ([351, To, 13,74 ]) = |2, 213, 314, 0]

The Project .
1. Is D a linear transformation?
What is R(T')?
Find dim(R(T)).
What is NV (T)?
Find dim(N(T)).
Calculate dim(R(T)) 4+ dim(N(T)).

L (Goto TOC) J
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15. Rank & Nullity
-

Definition 19 (Rank and Nullity of a Linear Transformation)
LetT € L(X,Y).

# The rank p of T'Is the dimension of the range space;
p(T) = dim(R(T))

# The nullity v of T is the dimension of the nullspace;
v(T) = dim(N(T))

=

Corollary 26 (Fundamental Theorem of Linear Algebra)
Let T € L(X,Y) where dim(X) = n. Then

p(T)+v(T)=n

Pf.

o -
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fC

orollary 27 LetT € (X,Y) where dim(X) < oo, and let

“Affine Nullspace”
-

B ={z1,...,zs} be abasis for 0(7T) so that dim(N(7T")) = s.
Then

1. avector x € X satisfies T'(x) = 0 iff there is a unique

Pf.

S

set of scalars a; s.t. x =) .| ajzy,

a vector yo € Y Is In R(T) Iff there Is at least one vector
re X st yo=T(x),

. If vectors zp € X and yp € Y are s.t. T'(xg) = yo, then

r € X satisfies T'(x) = yo Iff there is a unique set of
scalars 5; s.t. x = xo + >_:_q Bixi.

v

-
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Inverses

fTheorem 28 LetT € L(X,Y). T
1. T-! exists iff T'(z) = 0 implies x = 0; i.e., N(T) = {0}.
2. If T-1 exists, then T-! € L(R(T), X).

Pf. 1. (<) Assume NY(T') = {0}. Then T'(x1) = T'(x2) <
T(x))—T(re)=0=T(x1—22) =021 —220 €N T) &
1 = I9.

(=) Now assume that 7! exists and that 7'(x) = 0. Since
T(0) =0, then T(z) =T(0). Whence x = 0.

2. Assume that 7' is nonsingular and that T'(x1) = y1,

T(x2) = y2. Then T~ (y1 +yo) = T~ (T(21) + T(22)) =

T T(x1+a2) =21 +x2=T Y1)+ T (y2). FOra € F,
LT_l(ozyl) =T Y aT(x1)) = T YT (az1) = az1 = T Hy1). J
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Examples
. o

xample Set 16

® lLetT([a,b]) = 1 (2) la, b]. Show T'is nonsingular.
6 3] o
® Let S(la,b]) = 5 1 la,b]. Show T'Is singular.
. dp . .
® D:P — Pdefined by D(p) = o 1S singular.
X

® ISZ:P — Pdefined by Z(p) = [ pdz nonsingular?

® IsT([a,b]) =|a+b,0,a —b,0,0] invertible?

L (Goto TOC) J
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Project Solution

o .

The Group-Project solution is much easier when looking at
the spaces from a different “dimension.”

The Setup . Define D : R* — R* by
D ([331,5(32,333,:134]) = |x9,2x3,3x4,0]
A Solution . Consider 7 : P3 — P3 with 7T (p) = p/. (P3 = R?)
® R(T) = {polynomials of degree 2} =~ R?

® N(T) = {constant polynomials} = R!
® 4=3+1=>R' =P ={pecP’|p0)=0}aNT)

L (Go to TOC) J
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16. Singular and Nonsingular Example:

- .

Example Set 17

® lLetT([a,b]) = 1 (2) la, b]. Show T'is nonsingular.
6 3] o
® Let S(la,b]) = 5 1 la,b]. Show T'Is singular.
. dp . .
® D:P — Pdefined by D(p) = o 1S singular.
X

® ISZ:P — Pdefined by Z(p) = [ pdz nonsingular?

® IsT([a,b]) =|a+b,0,a —b,0,0] invertible?

o -
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“Inverse Results”

=

fTheorem 29 LetT € L(X,Y) with dim(X) < oco. Then T'Is
Invertible if and only If p(T") = dim(X). T Is said to have “full
rank.”

Pf. v

Theorem 30 LetT € L(X,Y) with dim(X) = dim(Y) =n
where n < co. Then T'is invertible if and only if R(T") =Y.

Pf. (=) T invertible implies that dim(R(7")) = n = dim(Y).
Since R(T) is a subspace of Y, then R(T) =Y.
(<) Choose a basis B = {y1,...,y,} for R(T) =Y. Then,

since T~!(B) is an independent set of size n, it forms a
basis for X. Hence the only set of scalars for which
>oir; =01s a; = 0. Whence N(T) = {0}, so T'is invertible.

o -
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Collected Results, |

|7Theorem 31 (Invertible Linear Transformations) Let X and Y T
be vector spaces over FFandletT € L(X,Y). TFAE:

T is invertible or nonsingular

T’ 1s injective or 1-1

T(x) =0implies x = 0; i.e., N(T) = {0}

Foreachy € Y, daunique x € X suchthat T(z) =y
If T'(x1) = T(xz2), then ;1 = x5

6. If x1 # 2o, then T'(z1) # T'(x2),

a k~ WD F

If X Is finite dimensional, then TFAE:

7. T Is injective
L 8. p(T) =dim(X) J
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Collected Results, I

-

Theorem 32 (Surjective Linear Transformations) Let X
and Y be vector spaces over FFandletT € L(X,Y). TFAE:

1. T Is surjective or onto

=

2. Fory e Y, thereis at least one x € X such that
T(z)=y
If X and Y are finite dimensional, then TFAE:
3. T'Is surjective

4. p(T)=dim(Y)

Pf. v

o -

Intro to Linear Alaebra MAT 5230 — p. 63/



Collected Results, Il

o .

Theorem 33 (Bijective Linear Transformations) Let X
and Y be vector spaces over FFandletT € L(X,Y). TFAE:

1. T is bijective or onto

2. Fory €Y, thereisaunique x € X suchthat T'(x) = y
If X and Y are finite dimensional, then TFAE:

3. T'Is surjective

4. p(T)=dim(X) = dim(Y)
Theorem 34 (Common Finite Dimension) Let X andY

be vector spaces over £ with finite dimension n and
T e L(X,Y). Then

L T :injective & T':surjective < T':bijective < T :invertible J
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Transformation Spaces

-

Definition 20 For Sand T'in L(X,Y) and « in F, define

1. S+Tby(S+T)z)2 S +T(x)

=

2. aShy(aS)(z) 2 aS(x)

3. SoT by (SoT)(z)2 S (T(x))

Theorem 35 L(X,Y) Is a vector space over F (using 1 & 2)

Theorem 36 L(X, X) Is an associative algebra with identity
over F (using 1, 2, & 3, and identity /(z) = x)

o

(Go Back) (View IATEX source)
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17. Transformation Spaces

- .

Definition 21 For Sand T'in L(X,Y) and « in F, define

1. S+Tby(S+T)z)2 S +T(x)

2. aS by (afd)(r) 2 aS(x)
3. ST by (ST)(z) £ S (T(z)) when range(T) C dom(S)
Theorem 37 LetS,T,U € L(X,X). Then
1. f ST =US = I, then S is bijective and S~! =T = U.
2. If S is bijective, then (S~1)~! = &S.
3. If S and T are bijective, then (ST)"! =T7-15-1,
L 4. If S'is bijective and o # 0, then (aS)™! = (1/a) - S71. J
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Polynomials of Transforms

=

fTheorem 38 L(X,X)Iis an associative algebra® with
Identity over F' (using 1, 2, & 3, and identity /(x) = x).
L(X, X) is usually noncommutative.

Definition 22 (Powers of Transforms)  LetT € L(X, X).
Then set T7° = T and, for n > 0, define 7™ & 7. 7("~1) and
T(—n) & (T—l)”,

Definition 23 Let p € P, so that
p(A) =ag+aA+---+a, \". ForT € L(X, X), define

n
p(T)=apl +a1T + -+ a,T" = Zozz-Ti.
1=0

| ® “Vector space plus multiplication.” See pg. 56 and 104 ofténe. o
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Finite Dimension Structure Theorem

fDeﬁnition 24 X Is isomorphic to Y, written X 2 Y, if and T
only if there is a bijection T' € L(X,Y).

Theorem 39 (Structure Theorem) Every n-dimensional
vector space X over the field £ is isomorphic to F™.

Pf. Choose a basis B = {e;,...,e,} for X. Then define
T e L(X,F") by

(E azez> a1, 9, ..., ap

Corollary 40 Let F be a field and n be a positive integer.
There Is exactly one vector space of dimension n over F.

L (Go to TOC) J

Intro to Linear Alaebra MAT 5230 — p. 68/




18. Linear Functionals

fDefinition 25 Let X be a vector space over F'. Then T
f e L(X, F) is called a linear functional.

Example Set 18
® Let f €Cla,b]. Then F(f) = fff(t) dt 1s a linear
functional.

® Let f € Cla,b] and choose k € Cla,b]. Then
Fe(f) = [7 f()k(t) dt is a linear functional.

® Let f € Cla,b] and zg € [a,b]. Is Y (x0) a linear
functional?
# Let I be afield. The mappings proj, : F™* — F for
i = 1..n given by proj; ([al, as, ... ,an]) = o are linear
L functionals. ¢ = ) «a; proj, Is also a linear functional. J
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Vector Space of Linear Functionals

fDefinition 26 Let X be a vector space over F. Define
X/ = L(X,F). When f € X/ is evaluated at the vector

r € X, we use the notation f(xz) 2 (x, f). Using 2z’ in place of
fe X/, we see

=

A

(fi+ R)@) = (w,a) + ) 2 (z,2}) + (z, zh)
= fi(z) + fo(x)
and
(af)(z) = (z,aa) 2 alz,)

= af(z)

Theorem 41 X/ = L(X, F) is a vector space over F called
Lthe algebraic conjugate of X. J
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Algebraic Conjugate Basis

fTheorem 42 Let X be a vector space with basis T
B={e,...,ep}andlet{ay,...,a,} be a set of arbitrarily
chosen scalars. Then there is a unique linear functional

+' € X7 such that (e;, 2') = o; fori = 1..n.

Pf. (3) For every x € X, we have unique scalars &; such that
r=>" ¢&e;. Define v’ € X/ by (z,2") =3 a;&. If x = ¢; for
some i, then & =1 and &; = 0 for every j # i. Hence

(x,2') = ay; 1.e., {e;, 7)) = .

(1) Suppose (e;, ) = a; and (e;, x4,) = «; for i = 1..n. Then
(ei, x}) — (ej,x5) = 0fori = 1..n, and so (e;, 27} — x}) = 0 for

i = 1..n. This implies that z = x5,

| ifi=
0 ifi£j
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19. Conjugate Dimension Theorem

- .

Theorem 43 Let X be a finite dimensional vector space

with basis B = {ey, ..., e, }. Then there exists a unique basis
B ={e},... e} for X7 such that (e;, ¢/;) = 6;; we call B’ the
dual basis of B. Further dim(X) = n = dim(X/).

Pf. There exists a unique set of linear functionals 5" = {¢’ }

such that (e;, e}) = 0;; for 4, j = 1..n which are found by

applying the previous theorem to the sets
Aj = {0yl = 1.n}.

(B is linearly independent)  Since ) j;e; = 0 implies

0= <€jaZﬁz‘€2> ZZ@'@MD ZZ@'%:@' B
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Conjugate Dimension Theorem, |

o | .

(Pf.) (B spans X/) Let 2/ € X/ and define o; = (e;, 2').
(This form is often called a projection.) For x € X, there are
scalars so that x = ) . &e;. Then

— <Z§Z’€Z’,SIJ,> Z 57,87,, Zgz Ci, L ) = Zgz&z

It also follows that (z,e’) = >, &i(es, ;) = ;. Combine these
two results to obtain

= Zai@,eé) = <x, Zaie;>
Lwhich gives us 2’ = ). ae;. J

(Goto TOC)
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20. Algebraic Transpose

- .

Definition 28 (Algebraic Transpose) LetS e L(X,Y).
Then ST .Y/ — XF given by (z, STy/) = (Sx,/') is the
algebraic transpose of S.

Example 19 Let X = R? and Y = R?. Define S ¢ L(R?, R?)

by y = S(x) = [§11] L: } and y' € Y7 by (y,y/) = [1,1] [} ].
Then 2/ = ST (y/) is found by

(w,2") = (z, 5Ty '>x (Sz,y) | 2'(x) = (ST(y))(x)
(o) = (3191 2] o) v'(z) = y/(S(2))
(w,2") = (| i ] v) v'(z) =y ([ 7aizs])
(x,2") = x1 + 2w9 + 23 o' (x) = x1 + 2w9 + 23
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The Space of Algebraic Transposes

Theorem 44 Let S* be the algebraic transpose of S where
S e L(X,Y). Then ST ¢ L(Y/ X/).

Pf. (Calculation.)
L.ST(y1 +y5) = ST () + 5" (y5)

(,8" (y1 + 1)) = (Sz, (y1 + 1)) = (Sw,y1) + (S, 1)
— <ZC, STy/1> + <ZC, STy,2>
2. 8T (ay) = a ST (y):
(2, 5" () = (Sz, ) = (S, y)

= a(z, ST () = (x,a ST ()
B -



Algebra of Algebraic Transposes

-

Theorem 45 Let I be the identity transform of L(X, X).
Then 17 is the identity transform of L(X/ X/).

=

Theorem 46 Let 0 be the zero transform of L(X,Y). Then
0" is the zero transform of L(Y/, X 7).

Theorem 47 LetR,S e L(X,Y)and T € L(Y,Z) and let R,
ST and T! be the respective transposes. Then

1. (R+S)' =R+ 57
2. (TS =81t

Exercise 3.52.32 (Pg. 113.) Prove the theorems.

o -

(Go to TOC)
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21. Bilinear Functionals

Recall: We have a + bi = a — bi for any complex number.

Definition 29 (Conjugate Functional) Let X be a vector
space over C. A mapping g : X — C Is a conjugate
functional iff g(ayz1 + asxo) = a7 g(x1) + az g(x2) for all

r; € X and o; € C

Definition 30 (Bilinear Form) Let X be a vector space
over C. A mapping ¢ : X x X — C is a bilinear form or
bilinear functional iff for all z, z; and y,y; € X and «;, 3; € C

1. 9(041$1 + (o9, y) = 9($17 y) + Q2 9($27 y)

2. g(ll?, 61y1 + 62y2) — Eg(xa yl) T Eg(ﬂ?, y?)

That is, g Is linear In the first variable and conjugate linear
un the second variable. J
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Examples

fExample Set 20 T
1. Let X = C? and g be given by
g(z1, 22) = Re(z1)NRe(z2) + Tm(z1)Tm(22).
2. Let X = R? and h be given by
h(z,y) =¥ = 2191 + T2%2.

3. Let X be a vector space over C and let P,Q € X/.
Then k(xq,x2) = P(x1)Q(x2) Is a bilinear functional.

4. The conjugate of a bilinear functional is also a bilinear
functional. l.e., h(z,y) = g(z,y). J
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-

Definition 31 Let X be a vector space over C and ¢ be a

Definitions

=

bilinear functional on X. Then for all z,y € X,

9o

9
9
9

g Is symmetric iff g(z,y) = g(y, ).

g Is positive iff g(x, x) > 0.

g Is strictly positive iff g(z,z) > 0 whenever x # 0.
g(z) = g(x,x) Is the quadratic form induced by g.

Example 21 For h : R? — R of Example Set 20, No 2, the
induced quadratic form is h(x) = h([z1, z2]) = 27 + 3.

o

(Goto TOC) J
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22. Quadratic Forms & Inner Products

- .

Theorem 48 Let g be a bilinear functional. Then
gz, y) +9ly,x) _ _(r+y) _[(7—y
2 I\ I\

Theorem 49 (Polarization) Let X be a vector space over
C and g be a bilinear functional on X. Then

wen= (3% (57
() (5

LPfs .V J
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"Symmetry Is Real”
-

Theorem 50 Let g and & be bilinear functionals on the
complex vector space X. If g = h, then g = h.

=

Theorem 51 A bilinear functional ¢ on a complex vector
space X Is symmetric iff g Is real.

Pf. (=) Let ¢ be symmetric, then g(x,y) = g(y, z) so that
(z) = g(z). Hence g is real.2

<) If gisreal, set h(z,y) = g(y, ) Then
() =g(x,x) = g(z,z) = g(x); 1. = ¢. By the previous
theorem, h = g, and hence g(x, ) g(y,x). Thatis g Is
symmetric.

?‘2/_\ Na)

L Az=Z =>axt+iy=x—1y = y=0 = zeR. J
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Inner Product

- .

X. Work through example 3.6.18 on pg. 117.

Definition 32 (Inner Product) A bilinear functional ¢ is an
Inner product iff

1. g is strictly positive g(z,z) > 0 whenever x # 0

2. g lIs symmetric g(z,y) =gy, x)

Definition 33 (Inner Product)  (Alternate Definition) A
function (-,-) : X x X — C is an inner product iff

1. (x,x) > 0 whenever x # 0 and (0,0) =0
y) = (¥, )

(2,
(x4 By, 2) = oz, 2) + B(y, 2)
(

2.
3.
4. (r,ay+ 0z) = al(z,y) + B(z, 2) J
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Inner Product Space

- .

efinition 34 A complex vector space with an inner
product is an inner product space. A subspace of an inner
oroduct space with the restricted inner product is an inner
oroduct subspace.

Definition 35 Let X be an inner product space. Two
vectors x and y are orthogonal, written as x 1 vy, Iff

(x,y) = 0. If = Is orthogonal to every vector ina set A C X,
then z L A.

Example Set 22

1. Let X = R? and let (z,y) = z1y1 + z2y2. Then {X; (-, )}
IS a real inner product space.
2. Let X =C" and let (u,v) =) wv;. Then {X;(-,-)} Isa
L complex inner product space. J

(Go to TOC)
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23. Inner Product Space Examples

- 1 .

Example 23 Let X = Cc[0, 1] and set (£, g) = /O oror

1
1. (t2+it,1—it):/ (2 it) (Lt itydt = o
0

2. (t* +it, 36t + (2t — 25)i) = 0, thence it follows that
(t? +it) L (36t + (2t — 25)7).
1

1 :
3. (627T/~c7j757 627rm't) _ / 627T(k—n)z'tdt _ ? 6—2m’(n—k)t

So (e?mhit g2ty — 5, Thus £ = {e?™" : n € Z} forms
a set of mutually orthogonal functions.

o -
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Orthogonal Polynomials

fExample 24 Let X = Cr|0, 27| and define the inner product T
21

(f,9)= [ f(t)g(t)dl.

0

27
1. (t2+t,1—t):/ (% + ) (1 — t)dt = 202(1 — 272)
0

2T
2. (cos(kt),cos(nt)) = / cos(kt) cos(nt)dt = g5kn- So
0
{cos(nt) : n = 0..00} IS @ mutually orthogonal set.

3. Set cos(t) = z. Then cos(nt) = cos(n arccos(x)) becomes
a polynomial in . The inner product becomes

9 (11 1

| gy =2 | JWalt) =i o
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Orthogonal Polynomials, Il

=

fExample 24

(3.) Set T, (x) = cos(narccos(x)). Then (Ty,T},) = dr,, SO that
{T,,,n =0..00} forms an orthogonal set of polynomials.
The first few Chebyshev polynomials are Ty(x) = 1 and

Ti(x) =x

To(z) = 22° — 1

T3(z) = 42° — 3z

Ti(z) = 8z* — 8% + 1

Ts(z) = 162° — 202> + 5x
(z) =

3229 — 482* 11822 — 1

o -

(Goto TOC)
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24. Projections

fDefinition 36 Let X =X{® Xy andletz =xz1 + z9 be the T
unique representation of z € X relative to X; & X>. Then
define the mapping P by P(x) = x1. We call P the projection
on X; along Xs.

Theorem 52 Let X = X; & X5 and P be the projection on
X, along Xs. Then

1. PeL(X,X)and P € L(X, Xy)

2. R(P) =X,
3. N(P) = X»
Pf. v

LExample 25 Let X =R? and P([x1, x3]) = 2. J
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Projections, Il

o .

Example 26 Let X = P3 and P(}.,%, auz’) = ag + asz?.

Theorem 53 Let P € L(X, X). Then P is a projection on
R(P) along N(P) iff P? = P,

Pf. (=) Suppose that P is the projection on $3(P) along

MN(P). Then X =R(P) N(P). Let z = x1 + x2. Then

P%(x) = P(P(z1 + x2)) = P(x1) = z1 Hence P? = P.

(<) Now suppose that P? = P. (i) Let y € R(P). Then

Jr € X so that P(x) = y. Whence P(P(z)) = P(y). But

P? =P, so P(P(z)) = P(x) =y, i.e. Py) =y. If yisalsoin

MN(P), then P(y) = 0 which implies that y = 0. Hence

R(P)NN(P) ={0}. () Forx € X, x = P(x)+ (I — P)(z). Set
r1 = P(x)and z2 = (I — P)(x) = x — x1. Thence X is equal

Lto X1 @ X2 with P being the projection on X; along Xo. J
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Projection “Symmetry”

=

Definition 37 P ¢ L(X, X) is idempotent iff P? = P.

Theorem 54 P is a projection on X; along X iff (1 — P) Is

a projection on X5 along Xj.

Corollary 55 If P is projection, then X = R(P) © M(P)

Example Set 27 Let X = R?.

» SetR([z:])=[3%]1#]1=[2]. s R aprojection?
o SetS([Z])=1[§ 4] [5]=[","].Is S aprojection?
o SetT([#1])=139][5]= |+ ] Is T a projection?

Definition 38 P is an orthogonal
- product space iff R(P) L N(P).

projection on an inner

-
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Projection Example S
B .,

(Eg.) InR%, set S([#1]) = [§ ][] =["5"].

R? = R(S) & N(S)

32
€
24
1
186,
0.8
T R(S)
2.4 1.6 0.8 08 16 2l 32 4
%
0.8

o -
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Projection Example in R’

| .

(Eg.) In R?, set X; = { [_S«Tf)] } and X, = {{%5] } .

t—1

-
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25. Elgenvalues
-

Definition 39 LetT € L(X, X), where X Is an T
n-dimensional vector space over F. A scalar )\ such that
T(x) = Ax for some nonzero x is called an eigenvalue of T

Theorem 56 LetT € L(X,X)andlet A € F. Then

My ={z|T(x) = Az} Is a subspace of X. This subspace is
equal to D1(\I — T') and, If nontrivial, is called an
eigenspace.

Pf. v

Background: Let X be an n-dimensional vector space over F'. Then
X = F™. Every linear transformation T" € L(X, X) can be described
by its action on a basis. Choosing a basis, allows 7' to be repre-
sented as matrix multiplication (in F). Using the “right” bases gives

LT as a diagonal matrix greatly simplifying everything. J
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Eigenvalues, Il

- .

# Eigenvalue notes from Luke

# Eigenvalues and differential equations notes from
Celes

\— (Go to TOC) J
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26. Vector Spaces & Matrices

fBackground . Let X be a vector space over the field F' and T
let dim(X) = n < oo.

® Then X = F"

# Then, given a basis By, each = € X can be written as
r=|ay,...,an]5, IN “basis order” (row or col format @)

® letT e L(X,Y). T's action on By, i.e., the set T'(Bx),
completely determines 7'(x) for any x € X.

® Let By be a basis for Y. Then there is a matrix T based
on By and By, SO that

a1l a2 -+ QAlin a1

y=T(x)=|.................... X

Aml Am2 - Amn 7%

N

a4 “Column” and “row” vectors are artifices to aid the arithneeti
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Examples andT = [T
-

Example Set 28
1. Let X = R?. Then [1, 2]{[1,0],[0,1]} = [—1, 1]{[171]7[273]}.

=

2. Let X = P? with the “standard basis” {e; = t'}.
r=[1,2,3] = 1+ 2t + 3t

3. Let D : P? — P3 be differentiation. Then, with the
standard basis {1,¢,t%,¢3},

o) -1

Definition 40 (The matrix of T) If By={e;} and By ={f;},
then T = |a;;] where a;; = proj;(1T'(e;)) with proj, : Y — Y
Lbeing the projection on the ith coordinate of Y w.r.t. By J

00 o B
20| . |8 —_ |2y
03 Y 39
00 0

J

OO
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The Matrix of T’
-

Example Set 29 LetT ¢ L(R? R?) given by T'([z1, z2])
= |x1 — 22,21 + x2].

1. Use the standard basis for both.Then T =[] 77 ].
2. Use Bx ={[1,1],2,3]} and By = {][1, 2], [4,3]}. Then

12

T4 3]
—\We now return you to the regularly scheduled program.—

Definition 41 (Coordinate representation) Let z € X and
let B = {e,...,e,} be abasis for X. Then there are unique
scalars {; such that z = » . §;. Write = In coordinate

&
representation with respect to the basis B as = =

- ol
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The Transition Matrix

fExample 30 LetB ={ey,...,eq} be the standard basis for T
R*. Set B* = {[1,2,1,0],[3,3,3,0],[2,-10,0,0], [-2,1, =6, 2]}.
Then, for z € R*, define Tg-_5 by [e1 ... ea] SO

13 2 -2
B =[%§50_16]><[x]5*
00 0 2
Hence ey e 5 1 6 _2-
g = |23 710 1| s [p] = 3 -3 3 3 < [a]
B-= 13 0 —6 B= | 1 o -1 B
00 0 2 60 0 1.

Query: How Is a vector in B, coordinates expressed in Bs
coordinates? Can of cake: use

—1
TB1—>BQ = TBQ—>B X T81—>B

(Goto TOC)
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27. Rank of a Matrix
-

fTheorem 57 LetT € L(X,Y) where dim(X) =n and
dim(Y) = m. The p(T) = r iff there are bases Bx and By
such that

\

T— [0..01 0..0 \m = dim(Y)

o -
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The Rank Theorem Examples
fExample Set 31 T

1. Consider T' € L(R? — R?). Then T must have one of
the forms below (assuming proper choice of bases):

lo10ls loools [ooo0!

Explain why.
2. Consider T € L(R3 — R*). Then T must have one of
the forms below (assuming proper choice of bases):

100 100 100 000
010 010 000 000
001 (> 000 |> 000> 000
000 000 000 000

L Explain why. J
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The Rank Theorem Proof

fTheorem 57 LetT € L(X,Y). Then p(T) =riff T = |4 0]. T
Pf. (&) Letr = p(T'). Choose a basis for 91(T") of n — r vectors
listing itas {e,.1,e,19,...,¢e,}. Extend this basis to all of X as

Bx ={ei,ea,...,er,€r11,...,e,}. Calculate F = {T'(e;) |i = 1..1}
which forms a basis for R(7"). (Thm 3.4.25) Extend F to a basis By

by adding vectors {f,+1,..., fm}. (Thm 3.3.44) Then
fi=Ter =) i+ 0)f2+--+(0)fr +(0) frg1 + - +(0) fm
fo=Tea=0)i+ 1) fa+---+(0)fr +(0) frg1+ - +(0) fm

fo=Ter = (0)f1 + (0)fa + -+ (1) fy + (0)frgr + -+ (0) fim
0= Te'r—H — (O)fl + (O)fZ + (O)f’r‘ + (O)fr—H + -+ (O)fm

0="Ten = (O)fi + (O)fo -+ (O)fs + (O frr + -+ (O)fm

o -

(Go to TOC)
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28. Rank & Algebra of Matrices

fDefinition 42 Let A € M,,, be the matrixof A € L(X,Y) T
w.r.t. the bases By and By . The rank of A is the largest
number of linearly independent columns in A.

Theorem 58 Let A, B, and C be comparable/conformal
matrices and let o, 3 € F. Then

1.

0N RN

(A+B)C=AC+BC

AB+C)=AB + AC

A(BC) = (AB)C

(a+ B)A = aA + A

a(A+B)=aA +aB

(0A)(9B) = (a)(AB)

A+B=B+A

(A+B)+C=A+(B+C) J
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E

heorem 59
1.

N o s

Algebra of Matrices

=

The zero matrix 0 = |0;;] represents the zero transform
0(x) = 0 for every basis.

. The identity matrix I = |0;;] represents the identity

transform /(xz) = x for every basis.

The matrix A is nonsingular iff the transform A is
nonsingular.

If A is nonsingular, then A~! is unique.

If A,, and B,, are nonsingular, then (AB)"! = B tA~L
rank(A,) =nifandonly if (A,z =0< z =0).
For A € M, setA™ =A- A A&A™ = (A~Hm,

m -
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Partitioned Vectors & Matrices

fPartitioning a vector or matrix can be very useful and is T
natural in direct sums. E.g.,

B air ai2ibn A A AL
E 1143121411
L2, as1 a2 ibor |, AT
SR S 21 Agoi Aoy

:/E ! 1 1
|9 ci1 ci2idin - _

Theorem 60 Let P € L(X, X) be a projection and
dim(X) = n. Then there is a basis for X = R(P) & N(P) s.t.

01 - ()Eo e 0

- 00+ 00 0. B

(Goto TOC)
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29. Similarity & Equivalence
=

Ab hinc: X and Y are vector spaces over F with dim X =n
and dim(Y') = m.

=

Theorem 61 Let By = {e1,...,e,} be abasis for X and let
P = [p;;] be an n x n matrix. Setej = . pjre;. Then

v =1{€l,....,e,} is abasis for X iff P is nonsingular.

Pf. Calculation based on the linear independence of Bx.

Definition 43 Let P be the matrix of Thm 61, then P is the
matrix of By w.r.t By.

Theorem 62 P is the matrix of B w.r.t By iff P! is the
matrix of By w.r.t By

LPf. Exercise. J
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Similarity of Matrices
-

Theorem 63 Let P be the matrix of B w.r.t Bx and Q be

the matrix of BY w.r.t B5. Then PQ is the matrix of BY w.r.t
Bx.

Pf. Exercise.

=

Theorem 64 Let P be the matrix of B3 w.r.t Bx and let
r € X be x in By coordinates. Then Px’ = x gives z in B
coordinates.

Pf. Exercise.

x = Px -2, y = Ax

[r o
, A Y =Qy

L " - = QAPX/ J

(Goto TOC)
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30. Equivalence of Transformations
- o

heorem 65 Let A € L(X,Y) where

® Ahas matrices Ag, .5, and Ay, _p , resp,
# P is the matrix of B, w.r.t. Bx and Q of By w.r.t. By

Then A’ = QAP.

Pf.
Al =AY priex = ) priler =) i (Z alkfl)
k k k z

- ZPM (Z am[ZQﬂfﬂ) - S:S:S:le@lkpki ' ff
k l J A A

Whence

L a;j = zz: z}; qil A1k Pk;j J
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Definition of Equivalence

. .

Definition 44 Two m x n matrices A and A’ are equivalent
Iff there are nonsingular square matrices P,, and Q,,, such
that A’ = Qum - A - P,. Equivalence is written as A’ ~ A.

Theorem 66 Matrix equivalence is an equivalence relation.
l.e., ~ Is reflexive, symmetric, and transitive.

Pf. Exercise.

Theorem 67 Let A and B € 91,,, ,. Then
1. A is equivalent to [TO] where r = rank(A).

2. A~ Biff rank(A) = rank(B).

o -
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Example 32 Consider A € L(R*,R%).

Equivalence Example

7 -9 5} —4 1 13 0 12
7 3 —8 —5 —-21 =31 8 6
Suppose A =1|4 9 5 6 | and A’ =| 13 14 —7 15
11 0 10 2 —1 21 3 0
0 12 -—-13 -—1] | 11 —46 —10 —21]
_ - —1 0 -1 1 —1]
—1 1 1 0
0 1 -1 -1 0
1 o -1 -1
Then P = andQ=| 1 —1 1 -1 -1
1 1 -1 0
1 —1 0 1 1
0 0 1 0
- - -1 0 0 -1 1|

-
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31. Determinants: “Work Day”

. .

xercise . Use an undergraduate text on Linear Algebra to:
1. Define the determinant of a matrix.
2. List the main properties/theorems on determinants.

3. Choose the five most important properties.

4. Give a numerical example demonstrating each
Important property listed.

5. Discuss the relation between determinant of a matrix
and nonsingularity of a linear transformation.

o -

(Goto TOC)
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32. Determinants & Invariants

Recall the following

=

Theorem 68 Let A € L(X, X).

o

© o o o

Al # 0 iff Ais nonsingular
A-B|=[A]-|B]|

A=A

aA| = a"|A| where n = dim(A)
Al =0 iff

K

>

>

A
A
A

nas a row/column of zeros
nas two identical rows/columns

nas a row/column that is a linear combination of

other rows/columns
Ax = b has nonunique solutions J
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Eigenvalue & Eigenvector

fDefinition 45 Let A e L(X, X). A scalar X\ such that there T
IS a nonzero x € X for which Az = Az Is an eigenvalue and
the corresponding x is an eigenvector.

Definition 46 The polynomial p(A\) = |A — M| Is the
characteristic polynomial of A.

Theorem 69 (Cayley-Hamilton) Let A € L(X,X). Then
p(A) = 0. (NB: Also p(0) = [ A\;. See Zhou?)

Definition 47 Let A € L(X, X). Then the subspace Y Is an
Invariant subspace under A iff A(Y) CY; l.e, Vy € Y, we
have Ay € Y.

Definition 48 Set 91, (A) = M), = N(A — \I).

2“Intro. to Symmetric Polynomials & Symmetric Functions” J
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Reduced Linear Transformation

fTheorem 70 Let Ae L(X,X). Then X, R(A), M(A), and T
{0} are all invariant subspaces under A.

Example 33 Let A: R* — R* be given by [} 7]. Then {0}.
N(A) = ([ 2 ]), R(A) = ([1]), and R? are all invariant,
Example 34 (Exercise.) Let B:R*—R? be given by E (ﬂ
Then {0}, M(B) = (? ), R(B) = (?), and R? are all invariant.

Theorem 71 Let A be an eigenvalue of A € L(X, X). Then
O, Is Invariant. (Exercise.)

Definition 49 Let X =Y & Z be such that both Y and Z
are invariant subspaces under A € L(X, X). Then A is

- reduced by Y and Z and A can take form [%1 14(1)2} . o

(Go to TOC)
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33. Eigenvalues & Diagonalization

-

Ab hinc: X Is an n-dimensional vector space over F.

=

Theorem 72 Let {)\;|i = 1..p} be a set of distinct eigen-
values of A € L(X, X) with corresponding nonzero eigen-
vectors £ = {e; | i = 1..p}. Then £ is linearly independent.

Pf. Assume £ Is dependent. Choose the smallest set of

vectors from &£ such that 0 = >, a;e} (reordering the » < p
vectors as needed). Then 0=A(0) =A(>",_; a;e}) which
gives 0 = S (Niages) . Now 0 = \.0 = A 3/, el or
0=>"", M\age; **) Subtract *) from **) to obtain

0 = S7=H (A — Ai)azel which contradicts ~ being minimal.
Hence £ is linearly independent.

o -
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“Elgenbasis’
-

Theorem 73 If A € L(X, X) has n distinct eigenvalues,
then there is a basis of eigenvectors B, = {e/|i = 1..p} such
that the matrix of A is diag(Aq, ..., A\p).

=

Pf. Exercise.

Corollary 74 If A € L(X, X) has n distinct eigenvalues,
then every matrix for A is similar to a diagonal matrix.

Pf. Collect the eigenvectors £ = {e}|i = 1..n}. Set
P=1le,...,e] Thendiag(A1,..., \y) = P71AP.

Example 35 See the Maple worksheet. (1o see what happens
without a “cooked” example, enter the following in Maple: wi t h( Li near Al gebr a) :

A = Randomvatri x(5,5, generator=rand(-3..3)); Eigenvectors(A);)

-
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34. “Elgen-Basis” Examples
-

xample 36

1. Let A= [%%} c L(R3,R?). Then p(\) = X3 — 2)\% + )

(and m()\) = A? — \) which indicates that A has eigen-
values: 0, 1, 1. The corresponding eigenvectors come

from 9, =N(A — A\I). So ‘.YtO:({gb and ‘ﬁ1:<[%},{§})

(Found by solvin TN 0 [?} — 0 with A = 0 and
y I o Tl 1FB] T B

1, respectively.)
(a) Define P and find P~'.

(b) Calculate the diagonal matrix P—'A P without using
matrix multiplication.
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“Elgen-Basis” Examples, I

. .

xample 37
1. Let B = H (%) %} c L(R?,R3). Then p()\) = A* — 3)2 (and

m(\) = A? — 3)%) which indicates that B has eigenval-
ues: 0,0, and 3. The corresponding eigenvectors come

from 9ty = N(B — A\I). So Ny = <[:H> and 913 = <[ﬂ>.

(Found by solving

1-X 1 2 T1 :

1 1-Xx 2 ][wz}:OWIth)\:O,
10 1-x]| L3

and 3, respectively.)

(a) Explain why P (and so P~!) doesn’t exist.

(b) Can B be diagonalized? Why or why not?
(Solution.)

-
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35. Geometric Multiplicity
-

Definition 50 Let A be an eigenvalue of A € L(X, X). Then T

# the algebraic multiplicity of X is the multiplicity as a root
of the characteristic polynomial p(\);

o the geometric multiplicity of X is the dimension of the
nullspace 91, = 9M(A — \I).

Example 38 Let X = R3. Each matrix below has character-
istic polynomial p(\) = —(\ — 2)°.

2 0 0 2 1 0] 2 1 0]
0 2 0 0 2 0 0 2 1
00 2 00 2 0 0 2

alg=3,geo=3 alg=3,geo0=2 alg_:?),gec;:l
\— iev = {ey,ea,e3}  iev = {ey, ez} iev = ey} J
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Reduction Partition

=

fTheorem 75 Let X = X{ @ X5 be a direct sum that reduces
Ae L(X, X);le., Alsinvariant on X; and X,. Then there is
a basis B for X such that

Ap— |00

Theorem 76 Let X = X; & --- @& X, be a direct sum that
reduces A € L(X, X); l.e., Ar = A|x, IS Invariant on X, for
k = 1..p. Then there is a basis B for X such that

Ay 0 ... 0

0 Ay ... 0 P
As=1| . . and [Ag| =] ] |4«

- 00 ..o4, B
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E

Minimal Polynomial

xample 39 If A € L(X, X) has n distinct eigenvalues in F,

=

then X = My, D DIy, and A = diag()\l, e ,)\n).

Definition 51 Let A € L(X, X). Then there Is a monic
polynomial m(\), the minimal polynomial, such that

® m(A)=0
# any polynomial m” with m/(A) = 0 has deg(m) <deg(m')

Example 40 The three matrices of Example 38 have

o

2 0 0
02 0

0 0 2

m\)=(\ - 2)

2 1 0 2 1 0

0 2 0 0 2 1

00 2 00 2
mN)=(A-22 mN)=(A-2°
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Properties of the Minimal Polynomial
- o

Theorem 78 Let ¢(\) be a polynomial such that ¢(A) = 0.
Then m(\)|q(N).

heorem 77 The minimal polynomial m(\) is unique.

Corollary 79 The minimal polynomial divides the charac-
teristic polynomial; 1.e., m(\)| p(A).

Theorem 80 The characteristic polynomial divides a power
of the minimal polynomial: p()) | [m(\)]" where n=dim(X).

Corollary 81 m(X) | p(\) | [m(N)]™.
Proofs . Exercises.

. -

(Go to TOC)
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36. Jordan Canonical Form
-

Definition 52 Let A € L(X, X). If there Is a power k such
that A* = 0, but A*~1 £ 0, then A is nilpotent of index k.

=

NB: For a nilpotent matrix A of index k, ma(\) = \*.

Definition 53 Define N, € M. to be
01 0 .. 07
00 1 .. 0
Nk — | . ..

"0 i
0 0-

O

0
L0
Then N, is nilpotent of index k.

Definition 54 Define Ji(\;) = N + A\;I. The matrix Ji()\;) IS

La Jordan block. J
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Jordan Blocks

- .

Theorem 82 Let Ji()\;) be the Jordan block matrix of size &
(with eigenvalue ;). Then

® p(A)= (A= N\)"
o m(\)=(0\—=\)

Pf. Consider Ji.()\;) — M. For A = \;, we see
Je(Ai) — Ail = N

which is nilpotent of index k. Hence p(\) = (A — \;)*. Since
m | p and no lower power of N than k gives 0, it follows that

we also have m(\) = (A — \;)".

o -
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Jordan Form
B

heorem 83 Let A € L(X, X) with

r r

p()\):H()\ — )™ and m()\):H()\ — )™

1=1 1=1
Then there is a block-diagonal matrix for A with blocks
J(N;). For each )\; the blocks J()\;) have the properties:

1. There is at least one block J,,,.();); all others have
order < m;.

2. The sum of the orders of the blocks for J(\;) Is n;.

3. The number of blocks J();) equals the geometric
multiplicity of ;.

4. A uniquely determines the number of blocks J(\;).

o -
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JCF Example, |
- o

12
Example 41 Let A = [(1)? ] . (A is not diagonalizable.)
00

First p(A\) = (4 — A\)(1 — \)3. Hence, m(\) = (4 — \)(1 — \)F
where k£ = 1,2, or 3. Testing, we determine that
m(\) = (4 — X\)(1 — \)?. Thus there are Jordan blocks J; (4)
and J(1) from the factor powers in m(\). Since the sum of
the block’s indices must be 4, the last block is J;(2). We
have determined that

il

1

4
JCF(A) = diag(J1(4), Jo(1), J1(1)) = [8
0
Now we compute the transition matrix P that converts
JCF(A) = P~1AP. The first eigenvalue 4 has one
Lindependent eigenvector: My = ([1,1,1,0]1). The second J

—_OoooO

1
1
2
0

OoOOoO—O
OO

Intro to Linear Alaebra MAT 5230 — pn. 124/



JCF Example, I
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Example 41 (continued) eigenvalue 1 has geometric
multiplicity 2; I.e., dim(91;) = 2, and has only 2 independent
eigenvectors. 91, = ([0,0,0,1]1,[1,1,—2,0]"). We need an-
other independent vector for P. Set 0N, o = 91 ((A — 11)#)

= ([0,0,0,1]*,[-3,0,1,0]",[-5,1,0,0]"). Let Ny = A — I,
then x1, xo = Niz1,..., z; = Niz;—1 can form an inde-
pendent chain of vectors. Try z; = [—5,1,0,0]', then

x9 = Nix1 = [2, 2, —4, O]T and x3 = Nizo = 0. We have 4
Independent vectors with which to construct P.

10
P = [m4[1],m1[1],3527351] — [%8
01

o -

(Go to TOC)
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37. JCF Examples
-

We will consider a 3 x 3 matrix A over R; i.e., A € L(R? R?).

441

Example 42 Let A = [8 2 421} . The characteristic polynomial

is p(\) = (4 — \)(2 — X\)%. The minimal polynomial is found to
be the same: m()\) = (4 — \)(2 — \)%2. We can directly write

the Jordan canonical form JCF(A) = {61 ) ?} (Explain why.)

002
We construct the transition matrix P from eigen- and

generalized eigenvectors. Set Ny = (A — 47). The nullspace
of Ny is ([1,0,0]1). Set v; = [1,0,0]". Now consider

Ny = (A — 2I). The nullspace of N, is ([—2,1,0]"). This
space iIs “too small,” since the algebraic multiplicity of A = 2
is 2. Consider Ny o = (A — 2I)?. The nullspace of N, is

u[—z, 1,011, [-9/2,0,1]%). Set 25 = [-9/2,0,1]*. This choice J
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JCF Examples, I

Example 42 (continued)

gives xa € MN(N22) —N(N2), and

=

then define 1 = No 29 = [—8,4,0]". Let P be the matrix
[?}1, I, wg]. Then

1 —8 —9/2
0 4 0
0 0 1

JOF(A) =P tAP= |0

and P! =

1 2 9/2]
0 1/4 0
0 0 1
;

1

2_

-

Intro to Linear Alaebra MAT 5230 —pn. 127/



JCF Finite Field Example
-

fWe will consider the same 3 x 3 matrix A, but now over Zs;

i.e., A€ L(Z2,Z3). Proceed as before, but calculate in Zs.

Example 43 Let A = [é % ‘;‘} . The characteristic polynomial

is p(\) = (4 — \)(2 — X\)%. The minimal polynomial is found to

be the same: m()\) = (4 — \)(2 — \)%2. We can directly write

the Jordan canonical form JCF(A) = {181 % g} (Explain why.)

We again construct the transition matrix P from eigen- and
generalized eigenvectors. Set Ny = (A —41) = (A + 11)
mod 5. The nullspace of N, is ([1,0,0]1). Set v; = [1,0,0]".
Now consider Ny = (A — 21) = (A+ 3I) mod 5. The null-
space of N, is ([3,1,0]1). This space is “too small,” since the
algebraic multiplicity of A = 2Is 2.

. -
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JCF Finite Field Example, Il
-

Example 43 (continued) Consider Noo = (A — 21)*

= (A+3I)* mod 5= [él § §} The nullspace of N; 5 Is

(13,1,01%,[3,0,1]%). Set x5 = [3,0, 1]* as this choice gives
z9 € M(Na2) — N(Ns), and then define x1 = Ny g = [2,4,0]1.
Let P be the matrix [vq, 1, z2]. Then

1 2 3 1 2 2
P=10 4 0| and P '=1|0 4 0
00 1 00 1

Whence )
4 40 25 4 0 0

JCF(A)=P 1AP=10 32 16| = {0 2 1| mod 5.

o 00 2| |00 2 o
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JCF Exercise
L _ _ o

0O —1 0 2
Exercise . Set A = - 00
0 O 1 O
-1 1 0 1
Find
1. p(A)
2. m(\)
3. the transition matrix P
4, JCF(A)
THE END

o -

(Go to TOC)
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