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1. Introduction

Symmetric polynomials and symmetric functions are ubiquitous in mathematics
and mathematical physics. For example, they appear in elementary algebra (e.g.
Viete’s Theorem), representation theories of symmetric groups and general linear
groups over C or finite fields. They are also important objects to study in algebraic
combinatorics.

Via their close relations with representation theory, the theory of symmetric
functions has found many applications to mathematical physics. For example,
they appear in the Boson-Fermion correspondence which is very important in both
superstring theory and the theory of integrable system [2]. They also appear in
Chern-Simons theory and the related link invariants and 3-manifold invariants [8].
By the duality between Chern-Simons theory and string theory [9] they emerge
again in string theory [1], and in the study of moduli spaces of Riemann surfaces
[6].

The following is a revised and expanded version of the informal lecture notes for
a undergraduate topic course given in Tsinghua University in the spring semester
of 2003. Part of the materials have also been used in a minicourse at the Center of
Mathematical Sciences at Zhejiang University as part of the summer program on
mathematical physics in 2003. I thank both the audiences for their participation.
The purpose of this course is to present an introduction to this fascinating field
with minimum prerequisite. I have kept the informal style of the original notes.
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2. Symmetric Polynomials

In this section we will give the definition of symmetric polynomials and explain
why they are called symmetric.

2.1. Definitions of symmetric polynomials. Let us recall the famous Viete’s
theorem in elementary algebra. Suppose x1, . . . , xn are the n roots of a polynomial

xn + a1x
n−1 + · · ·+ an.

Then

e1(x1, . . . , xn) =
n∑

i=1

xi = −a1,

e2(x1, . . . , xn) =
∑

1≤i1<i2≤n

xi1xi2 = a2,

· · ·
em(x1, . . . , xn) =

∑
1≤i1<···<im≤n

xi1 · · ·xim = (−1)mam,

· · ·
en(x1, . . . , xn) = x1x2 · · ·xn = (−1)nan.

The polynomial em(x1, . . . , xn) is called them-th symmetric polynomial in x1, . . . , xn.
It has the following property:

em(xσ(1), . . . , xσ(n)) = em(x1, . . . , xn),

for all permutations σ of {1, . . . , n}. Recall a permutation of {1, . . . , n} is a one-to-
one correspondence:

σ : {1, . . . , n} → {1, . . . , n}.

The above property of em(x1, . . . , xn) inspires the following:

Definition 2.1. A polynomial p(x1, . . . , xn) is called a symmetric polynomial if it
satisfies:

p(xσ(1), . . . , xσ(n)) = p(x1, . . . , xn),

for all permutations σ of {1, . . . , n}. We denote by Λn the space of all symmetric
polynomials in x1, . . . , xn.

2.2. Mathematical description of symmetry. Symmetry is clearly a geometric
property, so calling a polynomial symmetric might sound strange. To explain the
terminology, we need to explain how symmetry is described in mathematics. This
involves the algebraic notions of groups and group actions. The concept of a group
was introduced by Galois in his study of algebraic solutions of polynomial equations
of degree ≥ 5.

2.2.1. Groups. Let us examine a geometric example. A regular pentagon is clearly
symmetric, geometrically. The rotation around its center counterclockwise by 72
degrees will take the pentagon to itself. We regard this rotation as a map

T : R2 → R2,
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and define for any integer n,

Tn =


T ◦ T ◦ · · · ◦ T (n times), n > 0,
id, n = 0,
T−1 ◦ T−1 ◦ · · · ◦ T−1(−n times), n < 0.

Note T 5 = id, so we get a set of five elements:

G = {Tn|n ∈ Z}.

It is easy to see that the composition of maps defines a map

◦ : G×G→ G.

The following properties are clearly satisfied:

(Tm ◦ Tn) ◦ T r = Tm ◦ (Tn ◦ T r),
Tm ◦ id = id ◦Tm = Tm,

Tm ◦ T−m = T−m ◦ Tm = id .

Definition 2.2. A group is set G together with a map G × G → G denoted by
(g1, g2) 7→ g1 · g2, which satisfies the following properties:

(1) (g1 · g2) · g3 = g1 · (g2 · g3), for g1, g2, g3 ∈ G;
(2) there exists an element e ∈ G (called the identity element), such that

e · g = g · e = g

for all g ∈ G.
(3) for g ∈ G, there exists an element g−1 ∈ G (called the inverse element of

g) such that

g · g−1 = g−1 · g = e.

A group is called an abelian group if

g1 · g2 = g2 · g1,

for g1, g2 ∈ G.

Example 2.1. We have seen many examples of groups.
(a) The couples (Z,+), (Q,+), (R,+), and (C,+) are abelian groups for which

0 is the identity element.
(b) The couples (Q∗,×), (R∗,×), and (C∗,×) are abelian groups for which 1 is

the identity element.
(c) For any integer n > 1, the set

Zn = {0̄, 1̄, . . . , n− 1} = Z/ ∼

where p ∼ q iff p ≡ q (mod n), together with +, is an abelian group for which 0̄ is
the identity element.

(d) For any integer n > 1, the set

Z∗n = {m̄ ∈ Zn|(m,n) = 1}

together with × is an abelian group for which 1̄ is the identity element.
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Example 2.2. We also have many examples of groups in linear algebra.
(a) Every vector space is an abelian group under vector additions, with the zero

vector as the identity element.
(b) Given a vector space, denote by GL(V ) the space of linear transformations

from V to itself. Then GL(V ) is a group.
(c) Denote by GL(n,R) (or GL(n,C)) the space of invertible n × n matrices

with real (or complex) coefficients. Then GL(n,R) and GL(n,C) are groups under
matrix multiplications.

(d) Denote by O(n) (or U(n)) the space of n×n orthogonal (or unitary) matrices.
Then O(n) and U(n) are groups under matrix multiplications.

2.2.2. Symmetric groups. A permutation of [n] = {1, . . . , n} can be regarded as
a one-to-one correspondence σ : [n] → [n]. Denote by Sn the set of all such
permutations. Then it is straightforward to see that Sn together the composition
of maps ◦ is a group, for which the identity element is the identity permutation. It
is called the symmetric group of order n.

Exercise 2.1. For any set S, denote by Aut(S) the set of one-to-one correspon-
dences ρ : S → S. Prove (Aut(S), ◦) is a group for which the identity map is the
identity element. Here ◦ denotes the composition of maps.

2.2.3. Group actions. A closely related concept is that of a group action. A moti-
vating example is that an element in Sn permutes the n roots of a polynomial of
degree n.

Definition 2.3. Let G be a group. A G-action on a set S is a map G × S → S
denoted by (g, s) ∈ G× S 7→ g · s ∈ S, which satisfies the following properties:

(1) g1 · (g2 · s) = (g1 · g2) · s, for g1, g2 ∈ G, s ∈ S;
(2) e · s = s, for s ∈ S.

Given a group action G×S → S, for any g ∈ G, the assignment s 7→ g · s defines
a map ρ(g). It is easy to see that ρ(g) ∈ Aut(S) for ρ(g−1) is the inverse of ρ(g).
The assignment g 7→ ρ(g) defines a map ρ : G→ Aut(S). It satisfies:

ρ(g1 · g2) = ρ(g1) ◦ ρ(g2),

for g1, g2 ∈ G. This inspires the following:

Definition 2.4. A group homomorphism between two two groups G1 and G2 is a
map ρ : G1 → G2 satisfying the following property:

ρ(g1 · g2) = ρ(g1) · ρ(g2)

for all g1, g2 ∈ G1.

Conversely, given a map ρ : G → Aut(S) satisfying the above properties, one
gets a G-action on S by defining

g · s = ρ(g)(s),

for g ∈ G, s ∈ S. Hence in the following we will use a map ρ : G → Aut(S) to
denote a group action.
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2.2.4. Fixed point set.

Definition 2.5. Let ρ : G→ Aut(S) be a group action. An element s ∈ G is called
a fixed point if

g · s = s,

for all g ∈ G. We denote the set of fixed points in S by SG.

Exercise 2.2. Let V be a vector space. A homomorphism ρ : G → GL(V ) is
called a representation of G on V . Given a representation of G on V , V G is a linear
subspace of V .

2.3. Symmetric polynomials as fixed points. We now return to the discus-
sion of symmetric polynomials. Denote by C[x1, . . . , xn] the set of polynomials in
x1, . . . , xn of complex coefficients. Define a map

Sn × C[x1, . . . , xn] → C[x1, . . . , xn]

by
(σ · p)(x1, . . . , xn) = p(xσ−1(1), . . . , xσ−1(n)),

for σ ∈ Sn, p ∈ C[x1, . . . , xn]. We leave the proof of the following Proposition as
an exercise:

Proposition 2.1. The above map defines a representation of Sn on C[x1, . . . , xn].
The fixed points of this action are exactly the set of symmetric polynomials in
x1, . . . , xn.
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3. Poincaré series of Λn

We will show Λn has a natural structure of a graded vector space for which we
can define its Poincaré series.

3.1. A natural grading of C[z1, . . . , xn]. For simplicity of notations, we will write

Rn = C[x1, . . . , xn].

Recall the degree of a monomial xi1
1 · · ·xin

n is

i1 + · · ·+ in.

A polynomial

p(x1, . . . , xn) =
∑

i1,...,in

ai1,...,in
xi1

1 · · ·xin
n

is said to be homogeneous of degree k if ai1,...,in 6= 0 only when i1 + · · · + in = k.
Denote by Rk

n the space of all homogeneous polynomials in x1, . . . , xn of degree k.
The following characterization of homogeneous polynomials are well-known:

Proposition 3.1. The following statements are equivalent for p ∈ Rn:
(1) p ∈ Λk

n.
(2) p(λx1, . . . , λxn) = λkp(x1, . . . , xn), for all λ ∈ C.
(3) x1

∂p
∂x1

+ · · ·+ xn
∂p

∂xn
= kp.

Remark 3.1. The vector field E = x1
∂

∂x1
+ · · · + xn

∂
∂xn

is called the Euler vector
field on Cn.

The fact that every polynomial can be uniquely written as a sum of homogeneous
polynomials implies:

Rn = ⊕k≥0R
k
n.

Lemma 3.1. One has

dimRk
n =

(
k + n− 1
n− 1

)
.

Proof. Clearly
{xi1

1 · · ·xin
n |i1 + · · ·+ in = k, i1, . . . , in ≥ 0}

is a basis of Rk
n, hence we need to find the number of sequences (i1, . . . , in) of

nonnegative integers with i1 + · · · + in = k. Each of such a sequence corresponds
to a picture of the following form

◦ · · · ◦︸ ︷︷ ︸
i1

• ◦ · · · ◦︸ ︷︷ ︸
i2

• · · · • ◦ · · · ◦︸ ︷︷ ︸
in

I.e., among a sequence of k + n− 1 whites balls, change n− 1 balls by black balls.

The number of ways doing this is exactly given by
(
k + n− 1
n− 1

)
. �

Corollary 3.1. The sequence dimRk
n has the following generating function:∑

k≥0

dimRk
n t

k =
1

(1− t)n
.(1)
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Proof. Expand the right-hand side of (1) as Taylor series:

1
(1− t)n

=
∑
k≥0

(
k + n− 1

k

)
tk =

∑
k≥0

(
k + n− 1
n− 1

)
tk =

∑
k≥0

dimRk
n t

k.

�

3.2. Graded vector spaces and Poincaré series. The above discussions for Rn

inspires the following:

Definition 3.1. A (Z-)grading on a vector space V is a direct sum decomposition

V = ⊕k∈ZV
k.

If v ∈ V k, then we write deg v = k. A graded vector space is a vector space
with a grading. Suppose V is a graded vector space with V k = 0 for k < 0 and
dimV k <∞ for k ≥ 0, we define its Poincaré series by

pt(V ) =
∑
k≥0

dimV k tk

Exercise 3.1. Let V and W be two graded vector space. Define the following
grading on V ⊕W and V ⊗W :

(V ⊕W )k = V k ⊕W k,(2)

(V ⊗W )k = ⊕p+q=kV
p ⊗W q.(3)

Suppose pt(V ) and pt(W ) can be defined, then pt(V ⊕ W ) and pt(V × W ) can
defined and we have

pt(V ⊕W ) = pt(V ) + pt(W ),
pt(V ⊗W ) = pt(V )pt(W ).

3.3. A natural grading on Λn. For a nonnegative integer k, denote by Λk
n the

space of homogeneous symmetric polynomials in x1, . . . , xn of degree k. Clearly

Λk
n = Λn ∩Rk

n,

and
Λn = ⊕k≥0Λk

n.

We are interested in computing dim Λk
n and their generating function. For this

purpose we have to first find a basis of Λk
n. As will be seen later, there are many

natural choices of bases, and the study of relationships among them is an important
aspect of the theory of symmetric functions. For now, we construct a basis from
the monomial as follows. Define a map S : C[x1, . . . , xn] → C[x1, . . . , xn] by

(Sp)(x1, . . . , xn) =
∑

σ∈Sn

p(xσ(1), . . . , xσ(n)).

Then clearly Sp ∈ Λn. In particular, for a sequence of nonnegative integers
(λ1, . . . , λn),

S(xλ1
1 · · ·xλn

n ) =
∑

σ∈Sn

xλ1
σ(1) · · ·x

λn

σ(n)

is a symmetric polynomial. Since we also have

S(xλ1
1 · · ·xλn

n ) =
∑

σ∈Sn

x
λσ(1)
1 · · ·xλσ(n)

n ,
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it follows that for any permutation (λ̃1, . . . , λ̃n) of (λ1, . . . , λn), we have

S(xλ̃1
1 · · ·xλ̃n

n ) = S(xλ1
1 · · ·xλn

n ).

3.4. Partitions. Hence we will only consider sequence λ = (λ1, . . . , λn) with

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

We will write
|λ| = λ1 + · · ·+ λn.

When |λ| = k, we will say such a λ is a partition of k, and write λ ` k. The number
of nonzero λi’s is called the length of λ, and is denoted by l(λ). We will use the set

P(k, n) = {λ ` k|l(λ) ≤ n}
of partitions of k with length ≤ n. For a partition λ, define

mi(λ) = |{j|λj = i}|.
We will often write a partition also in the form of

1m1(λ)2m2(λ) · · · kmk(λ) · · ·
In this notation, we then have

P(k, n) = {1m1 · · · kmk |
k∑

i=1

imi = k,
∑

i

mi ≤ n}.

In the following, we will often omit the zero’s in a partition.

Example 3.1. (1) There is only one partition of 1: 1 = 1, it has length l(λ) = 1,
and m1(λ) = 1, mi(λ) = 0 for i ≥ 2, hence it can also be written as 11.

(2) There are two partitions of 2: (2) and (1, 1). For λ = (2), we have l(λ) = 1,
m2(λ) = 1, mi(λ) = 0 for i 6= 2, hence λ can also be written as 21. For λ = (1, 1),
we have l(λ) = 2, m1(λ) = 2, mi(λ) = 0 for i > 1, hence λ can also be written as
12.

(3) There are three partitions of 3. For λ = (3), l(λ) = 1, m3(λ) = 1, mi(λ) = 0
for i 6= 3, hence λ can also be written as 31. For λ = (2, 1), we have l(λ) = 2,
m1(λ) = m2(λ) = 1, mi(λ) = 0 for i > 2, hence λ can also be written as 1121. For
λ = (1, 1, 1), we have l(λ) = 3, m1(λ) = 3, mi(λ) = 0 for i > 1, hence λ can also
be written as 13.

3.5. Monomial symmetric polynomials. For a sequence α = (α1, . . . , αn) of
nonnegative integers, define

xα = xα1
1 · · ·xαn

n .

Given λ = (λ1, . . . , λn) ∈ P(k, n), consider the symmetric polynomial S(xλ). For
example, let λ = (1, 1) (where we have omitted n− 2 zero’s), then in C[x1, . . . , xn]
we have

S(x1x2) = 2(n− 2)!
∑

1≤i<j≤n

xixj .

It is more natural to ignore the factor 2(n− 2)! and consider∑
1≤i<j≤j≤n

xixj .

In general for λ ∈ P(k, n), define

mλ(x1, . . . , xn) =
∑

xα,
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where the sum is taken over all distinct permutations of λ. This is a symmetric
polynomial, called the monomial symmetric polynomial corresponding to λ.

Example 3.2. For example,

m(k)(x1, . . . , xn) = xk
1 + · · ·+ xk

n,

m(3,2)(x1, . . . , xn) =
∑

1≤i<j≤n

(x3
ix

2
j + x3

ix
2
j ),

m(2,2)(x1, . . . , xn) =
∑

1≤i<j≤n

x2
ix

2
j .

We leave the proof of the following Proposition as an exercise:

Proposition 3.2. The set

{mλ(x1, . . . , xn)|λ ∈ P(k, n)}
is a basis of Λk

n, hence
dim Λk

n = |P(k, n)|.

3.6. Young diagrams. In the above we have reduced the problem of finding the
Poincaré series of Λn to the problem of finding the generating series of the numbers
of partitions of length ≤ n. The latter is still not easy to solve at first sight. But
there is a related problem that has a very easy solution, i.e., the problem of finding
the numbers of partitions whose parts are ≤ n, more precisely, the problem of find
the number of elements in the following set:

P ′(k, n) = {1m1 · · ·nmn |
n∑

i=1

imi = k}.

We have

Proposition 3.3. The generating function of |P ′(k, n)| is
∞∑

k=0

|P ′(k, n)|tk =
1∏n

i=1(1− ti)
.

Proof. This is proved by using the series expansion:

1
1− t

=
∞∑

m=0

tm

as follows.

1∏n
i=1(1− ti)

=
n∏

i=1

∞∑
mi=0

timi =
∞∑

m1,...,mn=0

t
∑n

i=1 imi =
∞∑

k=0

|P ′(k, n)|tk.

�

We will find a one-to-one correspondence between P(k, n) and P ′(k, n). This
can be achieved by exploiting a graphical representation of a partition as follows.
Given a partition λ, the Young diagram of λ consists of l(λ) rows of adjacent
squares: the i-th row has λi squares, i = 1, . . . , l(λ). The first square of each row
lies at the same column. We will often denote also by λ the Young diagram of λ.
It is clear that λ has |λ| squares. The transpose of a Young diagram λ, denoted
by λ′, is the Young diagram obtained by transposing the columns and rows of λ.
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Now P(k, n) corresponds to the set of Young diagrams with k squares and ≤ n
rows, P ′(k, n) corresponds to the set of Young diagrams with k squares and ≤ n
columns. Hence the map λ 7→ λ′ establishes a one-to-one correspondence between
P(k, n) and P ′(k, n).

Corollary 3.2. The Poincaré series of the Λn has the following generating func-
tion:

pt(Λn) =
1∏n

i=1(1− ti)
.(4)
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4. Ring generators of Λn

In this section we will give interpretations of formulas (1) and (4) in terms of
rings and generators.

4.1. Rings. On the space Λn of symmetric polynomials in x1, . . . , xn, one can
define not only the addition, but also the multiplication. The standard properties
of additions and multiplications of numbers are satisfied.

Definition 4.1. A ring is a set R together with two maps

+ : R×R→ R

and
· : R×R→ R,

with the following properties: (R,+) is an abelian group, and

(x · y) · z = x · (y · z),
(x+ y) · z = x · z + y · z,
z · (x+ y) = z · x+ z · y,

for x, y, z ∈ R. A ring R is said to be commutative if

x · y = y · x,
for x, y ∈ R. An identity of a ring is an element 1 ∈ R such that

1 · x = x · 1 = x,

for all x ∈ R. A graded ring is a ring R with a decomposition

R = ⊕Rn

such that each Rn is closed under +, and

Rm ·Rn ⊂ Rm+n.

Example 4.1. (1) (Z,+, ·), (Q,+, ·), (R,+, ·), and (C,+, ·) are all commutative
rings with identity.

(2) For any positive integer n, (Zn,+, ·) is a commutative ring with identity.
(3) For any positive integer n, the space C[x1, . . . , xn] of polynomials in x1, . . . , xn

with coefficients in C is a graded commutative ring with identity under additions
and multiplications of polynomials.

For us the following Proposition is relevant:

Proposition 4.1. For any positive integer n, (Λn,+, ·) is a graded commutative
ring with identity.

4.2. Ring generators and Poincaré series.

Definition 4.2. A ring R is said to be freely generated by elements a1, . . . , an ∈ R
over C if every element can be uniquely written as a polynomials in a1, . . . , an. In
this case, we will write

R = C[a1, . . . , an].

Theorem 4.1. Suppose R is a graded ring freely generated by homogeneous ele-
ments a1, . . . , an, and deg ai = mi, i = 1, . . . , n. Then we have

pt(R) =
1∏n

i=1(1− tmi)
.
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Proof. Note
C[ai] = ⊕Cak

i ,

hence it is straightforward to see that

pt(C[ai]) =
∑
k=0

tkmi =
1

1− tmi
.

It is easy to see that as graded vector spaces,

R = C[a1]⊗ · · ·C[an].

Hence by (3),

pt(R) =
n∏

i=1

pt(C[ai]) =
1∏n

i=1(1− tmi)
.

�

For example, C[x1, . . . , xn] is freely generated by x1, . . . , xn over C, and all xi

have degree 1. Hence

pt(C[x1, . . . , xn]) =
1

(1− x)n
.

This recovers (1).

4.3. Application to Λn. In view of Theorem 4.1, (4) is a corollary of the following:

Theorem 4.2. For any positive integer n,

Λn = C[e1, . . . , en].

Before we give a proof, note this Theorem means that

{em1
1 · · · emn

m |mi ∈ Z+}

is a basis of Λn. Here Z+ is the set of nonnegative integers. Nowm = (m1, . . . ,mn) ∈
Zn

+ corresponds to a partition λ′ ∈ P ′(k, n), where

k =
n∑

i=1

imi.

For λ′ ∈ P ′(k, n), define

eλ′(x1, . . . , xn) = em1
1 (x1, . . . , xn) · · · emn

n (x1, . . . , xn).

If λ′ = (λ′1, λ
′
2, . . . , λ

′
k), then clearly we have

eλ′ = eλ′1
· · · eλ′k

.

Hence to prove Theorem 4.2, it suffices to show that

{eλ′}λ′∈P′(k,n)

is a basis of Λk
n. Recall

{mλ}λ∈P(k,n)

is a basis of Λk
n. Hence Theorem 4.2 follows from the following:
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Lemma 4.1. Let λ ∈ P(k, n), then

eλ′ = mλ +
∑

µ

aλµmµ,

for some nonnegative integers aλµ, where the sum is over over partition µ < λ (i.e.,
the first nonvanishing λi − µi is positive).

This can be proved by using the lexicographic order of polynomials. It will be
left to the interested reader.
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5. Complete Symmetric Polynomials

5.1. Complete symmetric polynomials and their generating function. For
each k ≥ 0, the complete symmetric polynomial is the sum of all monomials of
degree k:

hk(x1, . . . , xn) =
∑

d1+···+dn=k

xd1
1 · · ·xdn

n .

In particular h0(x1, . . . , xn) = 1. It is not hard to see that

hk(x1, . . . , xn) =
∑

λ∈P(k,n)

mλ(x1, . . . , xn).

Define the generating function for hk by:

Hn(t) =
∑

k≥0 hk(x1, . . . , xn)tk

Then we have

Hn(t) =
∑

d1,...,dn≥0

xd1
1 · · ·xdn

n td1+···+dn =
1∏n

i=1(1− txi)
.(5)

5.2. Relationship with elementary symmetric polynomials. Consider the
generating function of elementary symmetric polynomials:

En(t) =
n∑

i=0

ei(x1, . . . , xn)ti =
n∏

i=1

(1 + txi).(6)

Celarly we have
H(t)E(−t) = 1,

or equivalently,

k∑
r=0

(−1)rerhn−r = 0(7)

for all k ≥ 1. Here we have set

er(x1, . . . , xn) = 0

for r > n.

5.3. Determinantal formulas. We now solve (7) inductively. For k = 1,

h1 − e1 = 0

hence
h1 = e1.

For k = 2,
h2 − e1h1 + e2 = 0,

hence

h2 = e21 − e2 =
∣∣∣∣e1 e2
1 e1

∣∣∣∣
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Inductively one finds:

hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 · · · ek−1 ek

1 e1 e2 · · · ek−2 ek−1

0 1 e1 ek−3 ek−2

· · · · ·
· · · · ·
0 0 0 · · · e1 e2
0 0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= det(e1−i+j)1≤i,j≤n.(8)

By symmetry between h and e in the formula (7), one also get

ek =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 h2 h3 · · · hk−1 hk

1 h1 h2 · · · hk−2 hk−1

0 1 h1 hk−3 hk−2

· · · · ·
· · · · ·
0 0 0 · · · h1 h2

0 0 0 · · · 1 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= det(h1−i+j)1≤i,j≤n.(9)

Here we have used the convention that

ei(x1, . . . , xn) = 0

for i < 0 or i > n.

5.4. An involution on Λn. The symmetry between h and e suggests the intro-
duction of the following map ω : Λn → Λn:

ω(
∑

m1,...,mn

am1,...,mne
m1
1 · · · emn

n ) =
∑

m1,...,mn

am1,...,mnh
a1
1 · · ·hmn

n .

It has the following properties:
(a) ω is a ring homomorphism, i.e.

ω(p+ q) = ω(p) + ω(q), ω(p · q) = ω(p) · ω(q),

for p, q ∈ Λn.
(b) ω(ei) = hi and ω(hi) = ei.
(c) ω2 = id.

(a) is trivial. The first identity in (b) is by definition. For the second identity,
apply ω on both sides of (8) then use (9). (c) is a straightforward consequence of
(a) and (b).

As a corollary, we see that

Λn = C[h1, . . . , hn].

In other words, if we define for λ′ = (λ′1, . . . , λ
′
k) ∈ P ′(k, n),

hλ′(x1, . . . , xn) = hλ′1
(x1, . . . , xn) · · ·hλ′k

(x1, . . . , xn),

then
{hλ′}λ′∈P′(k,n)

is a basis of Λk
n.
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6. Newton Polynomials

6.1. Newton polynomials and their generating function. For r ≥ 1, the r-th
Newton polynomial (power sum) in x1, . . . , xn is

pr(x1, . . . , xn) = xr
1 + · · ·+ xr

n.

The generating function for them is

Pn(t) =
∑
r≥1

pr(x1, . . . , xn)tr−1 =
n∑

i=1

∑
r≥1

xr
i t

r−1

=
n∑

i=1

xi

1− xit
=

d

dt
log

1∏n
i=1(1− xit)

.

(10)

6.2. Newton formulas. By comparing with (5) and (6), one gets:

Pn(t) =
H ′n(t)
Hn(t)

=
E′n(−t)
En(−t)

.

By applying ω, one gets:

ω(Pn(t)) = Pn(−t),

or equivalently,

ω(pr) = (−1)r−1pr.

One also has

H ′n(t) = Pn(t)Hn(t), E′n(t) = Pn(−t)En(t).

Equivalently,

khk =
k∑

r=1

prhk−r,(11)

kek =
k∑

r=1

(−1)r−1prek−r.(12)

These are called the Newton formulas.

6.3. Determinantal formulas. We now inductively solve (12). For k = 1,

e1 = p1.

For k = 2,

2e2 = p1e1 − p2 =
∣∣∣∣p1 p2

1 p1

∣∣∣∣ .
For k = 3,

3!e3 = 2p1e2 − p1e1 + p2 =

∣∣∣∣∣∣
p1 p2 p3

2 p1 p2

0 1 p1

∣∣∣∣∣∣ .



INTRODUCTIONS TO SYMMETRIC POLYNOMIALS AND SYMMETRIC FUNCTIONS 17

By induction, one finds

k!ek =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 p3 · · · pk−1 pk

k − 1 p1 p2 · · · pk−2 pk−1

0 k − 2 p1 · · · pk−3 pk−2

· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · p1 p2

0 0 0 · · · 1 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(13)

One can also rewrite (12) as

pk =
k−1∑
r=1

(−1)k−r−1ek−rpr + (−1)k−1kek.

For k = 1,

p1 = e1,

For k = 2,

p2 = e1p1 − 2e2 =
∣∣∣∣e1 2e2
1 e1

∣∣∣∣ .
For k = 3,

p3 = e1p2 − e2p1 + 3e3 =

∣∣∣∣∣∣
e1 e2 3e3
1 e1 2e2
0 1 e1

∣∣∣∣∣∣ .
By induction, one finds

pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 · · · ek−1 kek

1 e1 e2 · · · ek−2 (k − 1)ek−1

0 1 e1 · · · ek−3 (k − 2)ek−2

· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · e1 2e2
0 0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(14)

By applying ω on both sides of (13) and (14), one gets:

k!hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 p3 · · · pk−1 pk

−(k − 1) p1 p2 · · · pk−2 pk−1

0 −(k − 2) p1 · · · pk−3 pk−2

· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · p1 p2

0 0 0 · · · −1 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(15)
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and

(−1)k−1pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 h2 h3 · · · hk−1 khk

1 h1 h2 · · · hk−2 (k − 1)hk−1

0 1 h1 · · · hk−3 (k − 2)hk−2

· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · h1 2h2

0 0 0 · · · 1 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.(16)

As a corollary, we have
Λn = C[p1, . . . , pn].

(This is a straightforward consequence of (13) and (14).) In other words, if we
define for λ′ = (λ′1, . . . , λ

′
k) ∈ P ′(k, n),

pλ′(x1, . . . , xn) = pλ′1
(x1, . . . , xn) · · · pλ′k

(x1, . . . , xn),

then
{pλ′}λ′∈P′(k,n)

is a basis of Λk
n.
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7. Schur Polynomials

So far we have only considered symmetric polynomials. In this section we will
consider anti-symmetric polynomials, and their relations with symmetric polyno-
mials. This leads us to the Schur polynomials.

7.1. Anti-symmetric polynomials. Recall a permutation can be written as a
product of transpositions. Consider the parity of the number of transpositions in
such a product. If it is even (or odd), then we say the permutation is even (or odd).
The sign of a permutation is defined by:

(−1)σ =

{
1, σ is even,
−1, σ is odd.

Definition 7.1. A polynomial p(x1, . . . , xn) ∈ C[x1, . . . , xn] is said to be antisym-
metric if

p(xσ(1), . . . , xσ(n)) = (−1)σp(x1, . . . , xn),

for σ ∈ Sn. Denote by An the space of all antisymmetric polynomials in x1, . . . , xn.

Example 7.1. For any nonnegative integers d1, . . . , dn, let

d = (d1, . . . , dn)

and

ad(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣
xd1

1 xd2
1 · · · xdn

1

· · . . . ·
· · · · · ·
· · · · · ·
xd1

n xd2
n . . . xdn

n

∣∣∣∣∣∣∣∣∣∣
is antisymmetric. In particular, let δ = (n − 1, n − 2, . . . , 1, 0), the Vandermonde
determinant

∆(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣
xn−1

1 xn−2
1 · · · x1 1

· · · · · · ·
· · · · · · ·
· · · · · · ·

xn−1
n xn−2

n . . . xn 1

∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(xi − xj)

is antisymmetric.

It is straightforward to verify the following:

Proposition 7.1. As a subspace of C[x1, . . . , xn], the space An has the following
properties:

• An is closed under additions.
• An ·An ⊂ Λn and Λn ·An ⊂ An.

It is instructive to recall the following definitions from algebra.

Definition 7.2. Let R be a commutative ring, an R-module is an abelian group
(M,+) together with a map R×M →M denoted by

(a, x) 7→ a · x
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for a ∈ R, x ∈M , such that

a · (x1 + x2) = a · x1 + a · x2,

(a1 + a2) · x = a1 · x+ a2 · x,
(a1 · a2) · x = a1 · (a2 · x),

for a, a1, a2 ∈ R, x, x1, x2 ∈M .

One can easily define R-module homomorphisms and isomorphisms.

Example 7.2. Let R be a commutative ring, then R⊕n = R ⊕ · · ·R (n times)
is automatically an R-module. An R-module isomorphic to R⊕n is called a free
R-module of rank n.

Definition 7.3. A superalgebra over C is a C algebra A with a Z2-grading

A = A0 ⊕A1

such that

A0 ·A0 ⊂ A0, A0 ·A1 ⊂ A1, A1 ·A0 ⊂ A1, A1 ·A1 ⊂ A0.

A superalgebra is said to supercommutative if

a · b = (−1)|a|·|b|b · a,
for homogeneous element in A. Recall an element a ∈ A is said to be homogeneous
if a ∈ Ai, and in this case we will write |a| = i.

Hence An is a Λn-module. Furthermore, Λ ⊕ An is a superalgebra, though not
supercommutative.

7.2. An as a Λn-module. The main result of this subsection is the following:

Theorem 7.1. For any positive integer n, An is a free Λn-module of rank 1.

We will need the following easy Lemma:

Lemma 7.1. Suppose p(x) ∈ C[x]. Then

p(a) = 0

for some a ∈ C if and only if (x− a)|p(x).

Theorem 7.2. Given p(x1, . . . , xn) ∈ Λn, we have

∆(x1, . . . , xn)p(x1, . . . , xn) ∈ An.

Conversely, given any q(x1, . . . , xn) ∈ An,
q(x1, . . . , xn)
∆(x1, . . . , xn)

∈ Λn.

Proof. The first statement is obvious. For the second statement, we first show that

q(x1, . . . , xn)|xi=xj
= 0,(17)

for 1 ≤ i < j ≤ n. Indeed, let σ be the transposition of i and j. Then for q ∈ An

we have

q(x1, . . . , xi, . . . , xj , . . . , xn) = −q(x1, . . . , xj , . . . , xi, . . . , xn).

One easily gets (17) by taking xi = xj . Hence by Lemma 7.1,

(xi − xj)|q(x1, . . . , xn),
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therefore,
∆(x1, . . . , xn)|q(x1, . . . , xn).

It is straightforward to see that q/∆ is symmetric. �

Now we construct maps F : Λn → An and G : An → Λn by:

F (p) = p∆, G(q) = q/∆,

for p ∈ Λn, q ∈ An. It is easy to see that F and G are Λn-module homomorphisms
and they are inverse to each other. This proves Theorem 7.1.

7.3. Schur polynomials. Similar to the introduction of monomial symmetric poly-
nomials, one can introduce the “antisymmetric monomials” as follows. Introduce
an operator

A : C[x1, . . . , xn] → C[x1, . . . , xn]
by

(Ap)(x1, . . . , xn) =
∑

σ∈Sn

(−1)σp(xσ(1), . . . , xσ(n)).

It is easy to see that Ap ∈ An for all p ∈ C[x1, . . . , xn]. For example,

A(xd1
1 · · ·xdn

n ) =
∑

σ∈Sn

(−1)σxd1
σ(1) · · ·x

dn
σn

= ∆d(x1, . . . , xn),

where d = (d1, . . . , dn).
Now similar to the argument that monomial symmetric polynomials

{mλ|λ ∈ P(k, n), k ≥ 0}
form a basis of Λn, one can prove that

{Aα(x1, . . . , xn)|d = (d1, . . . , dn) ∈ Zn, d1 > · · · > dn ≥ 0}
is a basis of An. Under the isomorphism F , they correspond to a basis

{Ad(x1, . . . , xn)/Aδ(x1, . . . , xn)|d = (d1, . . . , dn) ∈ Zn, d1 > · · · > dn ≥ 0}
is a basis of Λn.

We leave the proof of the following Lemma to the reader.

Lemma 7.2. Suppose d ∈ Zn satisfies

d1 > · · · > dn ≥ 0.

Define
λi = di − (n− i),

and
λ = (λ1, . . . , λn),

i.e.,
λ = d− δ.

Then λ is a partition of length ≤ n.

Definition 7.4. For α ∈ P(k, n), the Schur polynomial associated to λ is defined
by:

sλ(x1, . . . , xn) =
Aλ+δ(x1, . . . , xn)
Aδ(x1, . . . , xn)

.

From the above discussions, we have already given the proof of the following:
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Proposition 7.2. For any positive integer n,

{sλ|λ ∈ P(k, n)}

is a basis of Λk
n.

7.4. Generating series of Schur polynomials. Consider the following generat-
ing series of Schur polynomials:

S(x1, . . . , xn, y1, . . . , yn)

=
∑

d1,...,dn≥0

1
∆(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣
xd1

1 · · · xdn
1

· · · · ·
· · · · ·
· · · · ·
xd1

n · · · xdn
n

∣∣∣∣∣∣∣∣∣∣
yd1
1 · · · ydn

n .

Note for each λ ∈ P(k, n), the coefficient of

n∏
j=1

y
λj+n−j
j

in S(x1, . . . xn, y1, . . . , yn) is exactly sλ(x1, . . . , xn). It is not hard to see that

S(x1, . . . , xn, y1, . . . , yn) = ∆(y1, . . . , yn)
∑

l(λ)≤n

sλ(x)sλ(y).(18)

Theorem 7.3. We have:

S(x1, . . . , xn, y1, . . . , yn) =
∆(y1, . . . , yn)∏

1≤i,j≤n(1− xiyj)
.(19)

Proof. By standard properties of the determinant we have:

S(x1, . . . , xn, y1, . . . , yn)

=
1

∆(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣

∑
d1≥0(x1y1)d1 · · ·

∑
dn≥0(x1yn)dn

· · · · ·
· · · · ·
· · · · ·∑

d1≥0(xny1)d1 · · ·
∑

dn≥0(xnyn)dn

∣∣∣∣∣∣∣∣∣∣
=

1
∆(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣

1
1−x1y1

· · · 1
1−x1yn

· · · · ·
· · · · ·
· · · · ·
1

1−xny1
· · · 1

1−xnyn

∣∣∣∣∣∣∣∣∣∣
.
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The determinant can be evaluated as follows. Subtract the last row from the i-th
row (i > n), and use common denominators. We get:∣∣∣∣∣∣∣∣∣∣

1
1−x1y1

· · · 1
1−x1yn

· · · · ·
· · · · ·
· · · · ·
1

1−xny1
· · · 1

1−xnyn

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

y1(x1−xn)
(1−x1y1)(1−xny1)

· · · yn(x1−xn)
(1−x1yn)(1−xnyn)

· · · · ·
· · · · ·

y1(xn−1−xn)
(1−xn−1y1)(1−xny1)

· · · yn(xn−1−xn)
(1−xn−1yn)(1−xnyn)

1
1−xny1

· · · 1
1−xnyn

∣∣∣∣∣∣∣∣∣∣∣
=

∏n−1
i=1 (xi − xn)∏

1≤j≤n(1− xnyj)

∣∣∣∣∣∣∣∣∣∣

y1
1−x1y1

· · · yn

1−x1yn

· · · · ·
· · · · ·

y1
1−xn−1y1

· · · yn

1−xn−1yn

1 · · · 1

∣∣∣∣∣∣∣∣∣∣
.

Now subtract the last column from the j-th column, use common denominators,
and simply as above. We get:∣∣∣∣∣∣∣∣∣∣

1
1−x1y1

· · · 1
1−x1yn

· · · · ·
· · · · ·
· · · · ·
1

1−xny1
· · · 1

1−xnyn

∣∣∣∣∣∣∣∣∣∣
=

∏n−1
i=1 (xi − xn)(yi − yn)

(1− xnyn)
∏

1≤j≤n−1(1− xnyj)(1− xjyn)

∣∣∣∣∣∣∣∣
y1

1−x1y1
· · · yn

1−x1yn−1

· · · · ·
· · · · ·

y1
1−xn−1y1

· · · yn

1−xn−1yn−1

∣∣∣∣∣∣∣∣ .
Hence by induction one can show that∣∣∣∣∣∣∣∣∣∣

1
1−x1y1

· · · 1
1−x1yn

· · · · ·
· · · · ·
· · · · ·
1

1−xny1
· · · 1

1−xnyn

∣∣∣∣∣∣∣∣∣∣
=

∆(x1, . . . , xn)∆(y1, . . . , yn)∏
1≤i,j≤n(1− xiyj)

.

The proof of the Theorem is complete. �

Corollary 7.1. We have

1∏n
i=1(1− xiyj)

=
∑

l(λ)≤n

sλ(x)sλ(y).(20)

7.5. Jacobi-Trudy formula. It is very interesting to study the relationship be-
tween the basis given by Schur polynomials and the bases given by other types
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of symmetric polynomials. For example, there are integers Kλµ (called Kostka
numbers) such that

sλ =
∑

µ

Kλµmµ.

These numbers are interesting objects to study in algebraic combinatorics. There
are also integers χλ

µ such that

pµ =
∑

λ

χλ
µsλ,(21)

sλ =
∑

µ

χλ
µ

zµ
pµ,(22)

where
zµ =

∏
i

imi(µ)mi(µ)!.

The integers {χλ
µ} give the character table of the symmetric groups. For details,

see §??.
In this subsection, we consider the relationship between Schur polynomials and

elementary or complete symmetric polynomials.

Theorem 7.4. (Jacobi-Trudy identities) For any λ ∈ P(k, n), the following iden-
tities hold:

sλ(x1, . . . , xn) = det(hλi−i+j)1≤i,j≤n.(23)

Proof. Recall

∆(y1, . . . , yn) =
∑

σ∈Sn

(−1)σ
n∏

j=1

y
n−σ(j)
j ,

1∏n
i=1(1− xit)

=
∑
m≥0

hm(x1, . . . , xn)tm.

Hence by (19), we have:

S(x, u) =
∑

σ∈Sn

(−1)σ
n∏

j=1

y
n−σ(j)
j ·

n∏
j=1

hmj
(x)ymj

j

=
∑

σ∈Sn

(−1)σ
n∏

j=1

hmj
(x)ymj+n−σ(j)

j .

Consider the coefficients of
n∏

j=1

y
λj+n−j
j ,

we get

sλ(x) =
∑

σ∈Sn

(−1)σ
n∏

j=1

hλj−j+σ(j)(x)

= det(hλi−i+j)1≤i,j≤n.

This proves the Jacobi-Trudy identity. �
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There is another Jacobi-Trudy identity:

sλ(x1, . . . , xn) = det(eλ′i−i+j).(24)

Its proof is more complicated. The interested reader can consult [7]. From (23)
and (24), one easily see that

ω(sλ) = sλ′ .
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8. Symmetric Functions

Most of the results above does not depend on the number of indeterminates.
Hence one can consider the limit of infinitely many indeterminates. This leads to
the space of symmetric functions.

8.1. Space of symmetric functions. For m ≥ n, define ρm,n : Λm → Λn by

p(x1, . . . , xm) 7→ p(x1, . . . , xn, 0, . . . , 0).

Define
Λk = lim←

n

Λk
n.

An element of Λk is a sequence

{fn(x1, . . . , xn) ∈ Λk
n}

such that
fn(x1, . . . , xn−1, 0) = fn−1(x1, . . . , xn−1).

One can also regard it as a function in infinitely many variables:

f(x1, . . . , xn, . . . ),

such that
f(x1, . . . , xn, 0, . . . ) = fn(x1, . . . , xn)

for all positive integer n.
Define

Λ = ⊕k≥0Λk.

This is the space of all symmetric functions.
Most of the results in the preceding sections can be easily generalized to Λ, so

we will leave their exact forms mostly to the reader. One can easily define mλ, eλ,
hλ, pλ, and sλ for infinitely many variables. They form bases of Λ. Furthermore,
Λ is a graded ring with

pt(Λ) =
∏
i≥1

1
1− ti

,(25)

and one can take {e1, . . . , en, . . . }, or {h1, . . . , hn, . . . }, or {p1, . . . , pn, . . . } as free
ring generators. Recall the Dedekind eta function is defined by:

η(q) = q1/24
∏
n≥1

(1− qn).

8.2. Three series expansions.

Theorem 8.1. The following identities hold:
1∏

i,j≥1(1− xiyj)
=

∑
λ

hλ(x)mλ(y) =
∑

λ

mλ(x)hλ(y)(26)

=
∑

λ

1
zλ
pλ(x)pλ(y)(27)

=
∑

λ

sλ(x)sλ(y).(28)
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Proof. Recall
1∏

i≥1(1− xiy)
=
∑
r≥0

hr(x)yr,

hence we have
1∏

i,j≥1(1− xiyj)
=
∏
j≥1

∑
rj≥0

hrj
(x)yrj

j

=
∑∏

j

hrj
(x)yrj

j =
∑

λ

hλ(x)mλ(y).

This proves (26).
Recall

1∏
i≥1(1− xiy)

= exp

−∑
i≥1

log(1− xiy)


= exp

∏
i≥1

∑
k≥1

1
k

(xiy)k)

 = exp

∑
k≥1

1
k
pk(x)yk

 ,

hence

1∏
i,j≥1(1− xiyj)

= exp

∑
j≥1

∑
k≥1

1
k
pk(x)yk

j


= exp

∑
k≥1

1
k
pk(x)pk(y)

 =
∏
k≥1

∑
mk≥0

pmk

k (x)pmk

k (y)
mk!kmk

=
∑

λ

1
zλ
pλ(x)pλ(y).

This proves (27).
One can prove (28) by taking n→∞ in (20). �

8.3. Hermitian metric on Λ. Regard xi as real variables. The complex conju-
gation defines an involution on Λ.

We now define a scalar product on Λ by requiring

〈hλ,mµ〉 = δλ,µ,

for all partitions λ and µ. Furthermore, 〈·, ·〉 is required to have the following
property:

〈a1f1 + a2f2, g〉 = a1〈f1, g〉+ a2〈f2, g〉,
〈f, b1g1 + b2g2〉 = b̄1〈f, g1〉+ b̄2〈f, g2〉.

We will show show below this scalar product is actually a positive definite Hermitian
metric.

Lemma 8.1. For k ≥ 0, let {uλ} and {vλ} be two bases of Λk, indexed by partitions
of k. Then the following are equivalent:

(a) 〈uλ, vµ〉 = δλ,µ, for all λ, µ.
(b)

∑
λ uλ(x)vµ(y) =

∏
i,j≥1(1− xiyj)−1.
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Proof. Let A = (aλρ) and B = (bµσ) be two matrices such that

uλ =
∑

ρ

aλρhρ, vµ =
∑

σ

bµσmσ.

Then we have

〈uλ, vµ〉 =
∑

ρ

aλρb̄µρ,

hence (a) is equivalent to ∑
ρ

aλρb̄µρ = δλµ,

i.e.,
AB∗ = I.

On the other hand, ∑
λ

uλ(x)v̄(y) =
∑

λ

∑
ρ

∑
σ

aλρb̄λσhρ(x)mσ(y),

1∏
i,j≥1(1− xiyj)

=
∑

λ

hλ(x)mλ(y).

Hence (b) is equivalent to ∑
λ

aλρb̄λσ = δρσ,

i.e.,
B∗A = I.

Therefore (a) and (b) are equivalent. �

Corollary 8.1. We have

〈pλ, pµ〉 = δλµzλ,

〈sλ, sµ〉 = δλµ.

Proof. Straightforward consequences of (27), (28) and Lemma 8.1. �

Corollary 8.2. The scalar product 〈·, ·〉 is a positive definite Hermitian metric on
Λ. Furthermore,

〈ω(u), ω(v)〉 = 〈u, v〉
for u, v ∈ Λ.
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9. Applications to Bosonic String Theory

In this section we will show that Λ admits a natural structure of a bosonic Fock
space. We will also consider some consequences of this fact.

9.1. Heisenberg algebra action.

Definition 9.1. A Lie algebra is a vector space g together with a bilinear map

[·, ·] : g× g → g,

such that

[X,Y ] = −[Y,X],
[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]],

for X,Y, Z ∈ g.

Let h be the vector space spanned by {αn : n ∈ Z} and c. Define an antisym-
metric bilinear form [·, ·] : h× h → h by requiring:

[αm, αn] = mδm,−nαm,(29)
[c, αm] = 0,(30)
[c, c] = 0,(31)

for m,n ∈ Z. It is easy to show that (h, [·, ·]) is a Lie algebra. It is called the
(infinite) Heisenberg algebra.

9.2. Bosonic Fock space, creators, and annihilators.

Definition 9.2. A linear representation of g is a linear map

ρ : g → End(V ),

such that
ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X),

for all X,Y ∈ g. We will often write ρ(X)v as Xv.

A highest weight representation of h is a representation V of h, which has the
following properties. There is a vector |0〉 ∈ V , called the vacuum vector, such that

αn|0〉 = 0

for n ≥ 0; V is spanned by elements of the form (n1, . . . , nk > 0):

α−n1 · · ·α−nk
|0〉;(32)

and c as by a multiplication by a constant. A highest weight representation is also
called a bosonic Fock space.

The operators {α−n}n>0 are said to be creators, and the operators {αn}n≥0

annihilators. Physically, a vector of the form (32) represents a state which contains
particles α−n1 , . . . , α−nk

. The effect of the action of the operator α−n on this vector
is the addition of a particle α−n, and the effect of the action of the operator αn is
the removal of a particle α−n. This explains the terminology.
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9.3. Heisenberg algebra action on Λ. We now show Λ has the natural structure
of a bosonic Fock space. Define αn : Λ → Λ as follows:

αnf =


p−n(x) · f(x), n < 0,
0, n = 0,
n ∂f

∂pn
, n > 0,

and let c : Λ → Λ be the identity map. It is straightforward to see that this defines
an action of the Heisenberg algebra on Λ, for which 1 is the vacuum vector. Since
Λ is spanned by {pλ}, it is a bosonic Fock space.

Proposition 9.1. With respect to the Hermitian metric on Λ, one has

α∗n = α−n,

c∗ = c.

Proof. For the first identity, it suffices to prove the case of n > 0.

〈αnpλ, pµ〉 = 〈n∂pλ

∂pn
, pµ〉 = 〈nmn(λ)pmn(λ)−1

n

∏
i 6=n

p
mi(λ)
i ,

∏
i

p
mi(µ)
i 〉

= nmn(λ)δmn(λ)−1,mn(µ)n
mn(λ)−1(mn(λ)− 1)! ·

∏
i 6=n

δmi(λ),mi(µ)i
mi(λ)mi(λ)!

= δmn(λ),mn(µ)+1n
mn(λ)mn(λ)! ·

∏
i 6=n

δmi(λ),mi(µ)i
mi(λ)mi(λ)!

= 〈pλ, pnpµ〉 = 〈pλ, α−npµ〉.

The second identity is trivial. �

9.4. Normal ordering and Virasoro algebra action on Λ. The grading by
degrees on Λn induces a natural grading on Λ:

deg pλ = |λ|.

This grading can be reformulated in terms of the operators αn as follows. First
consider the generalized Euler vector field:

L0 =
∑
n>0

npn
∂

∂pn
.

It can be rewritten as:
L0 =

∑
n>0

α−nαn.

This expression is not symmetric since the sum is only taken over positive integers.
It suggests one to consider the sum

K =
∑
n∈Z

α−nαn.

Unfortunately, one encounters an infinitity when one considers

Kpλ.

For example,
K|0〉 =

∑
n<0

α−nαn|0〉 =
∑
n>0

n|0〉.
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To avoid such situations, physicists introduce the normally ordered product defined
as follows:

: αn1 · · ·αnk
:= αni1

· · ·αnik
,

where ni1 ≤ · · · ≤ nik
is a permutation of n1, . . . , nk. It is then easy to see that

L0 =
1
2

∑
n∈Z

: α−nαn :=
1
2

∑
k+l=0

: αkαl : .

Introduce

Ln =
1
2

∑
k+l=n

: αkαl : .

Remark 9.1. At first sight the definition of Ln involves an infinite sum and there
might be an issue of convergence here. Since for any v ∈ Λ, αnv = 0 for n sufficiently
large, hence : αkαlv = 0 for sufficiently large k or l, and so Lnv actually involves
only finitely many nonvanishing : αkαl : v. We will implicitly use this fact below.

We leave the proof of the following Lemma to the reader.

Lemma 9.1. Let V be a vector space. Define [·, ·] : End(V ) → End(V ) by

[A,B] = AB −BA.

Then one has

[A,B] = −[B,A],
[A, [B,C]] = [[A,B], C] + [B, [A,C]],
[A,BC] = [A,B]C +B[A,C],
[AB,C] = A[B,C] + [A,C]B.

From the definition of the normally ordered product and the commutation rela-
tion (29), one easily verifies the following:

Lemma 9.2. We have

: αmαn :=

{
αmαn −mδm,−n id, m > 0, n < 0,
αmαn, otherwise.

(33)

In particular,

[A, : αmαn :] = [A,αmαn],

for A ∈ End(Λ), m,n ∈ Z.

Theorem 9.1. One has the following commutation relations:

[αm, Ln] = mαm+n,

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−n.
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Proof. By Lemma 9.2 we have

[αm, Ln] =
1
2

∑
k+l=n

[αm, : αkαl :] =
1
2

∑
k+l=n

[αm, αkαl]

=
1
2

∑
k+l=n

([αm, αk]αl + αk[αm, αl])

=
1
2

∑
k+l=n

(mδm,−kαl + αk ·mδm,−l)

= mαm+n.

To prove the second identity we assume m ≥ n without loss of generality.

[Lm, Ln] =
1
2

∑
k∈Z

[: αm−kαk :, Ln]

=
1
2

∑
k>0

[αm−kαk, Ln] +
1
2

∑
k>0

[α−kαm+k, Ln]

=
1
2

∑
k>0

(αm−k[αk, Ln] + [αm−k, Ln]αk

+α−k[αm+k, Ln] + [α−k, Ln]αm+k)

=
1
2

∑
k>0

(αm−k · kαk+n + (m− k)αm+n−kαk

+α−k · (m+ k)αm+n+k + (−k)α−k+nαm+k)

=
1
2

∑
k>0

(k : αm−kαk+n : −k : αm+kα−k+n :

+(m− k) : αm+n−kαk : +(m+ k) : αkα−k :)

+
1
2

m−1∑
k=1

k(m− k)δm,−n id

=
1
2

∑
p+q=m+n

((q − n) : αpαq : +(−q +m) : αpαq :) +
m3 −m

24
δm,−n id

= (m− n)L0 +
m3 −m

24
δm,−n id .

�

9.5. Vertex operator. Consider the generating series of operators αn:

α(z) =
∑
n∈Z

αnz
−n−1.

This is a “field of operators”. Integrating once, one gets another series:

Y (z) = C + a0 ln z +
∑
n>0

α−n

n
zn −

∑
n>0

αn

n
z−n.

For simplicity, we will take C = a0 = 0. Now note∑
n>0

α−n

n
zn|0〉 =

∑
n>0

pn

n
zn = P (z) = logH(z).
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This suggests one to consider

exp

(∑
n>0

α−n

n
zn

)
,

its “adjoint”

exp

(∑
n>0

−αn

n
z−n

)
,

and the field:

X(z) =: expY (z) := exp

(∑
n>0

α−n

n
zn

)
exp

(∑
n>0

−αn

n
z−n

)
.

This is the vertex operator in free bosonic string theory. Write:

X(z) =
∑
n∈Z

Xnz
−n.

It is not hard to see that

X(z)|0〉 = H(z).

I.e.,
X−n|0〉 = hn.

In general, one has [4]

Theorem 9.2. For any partition λ1 ≥ · · · ≥ λn > 0, one has

X−λ1 · · ·X−λn
|0〉 = sλ.
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Appendix A. Basics of Free Bosonic String Theory: The Physical
Approach

In this section we sketch some basics of the physical theory of the free bosonic
strings.

A.1. Lagrangian of free boson on cylinder. The trajectory of a closed string
moving in the Minkowski space R3,1 is a cylinder S1×R, hence it can be described
by a smooth map

f : R1 × S1 → R4,

or equivalently by four functions:

ϕi : R1 × S1 → R.

Take linear coordinate x0 on R1. Let

{e
√
−1x1

: 0 ≤ x1 < 2π}

be the set of all the points on S1. Endow the cylinder with a Riemannian metric
g = (dx0)2 + (dx2)2. For simplicity of presentation, we will deal with only one
component of the map f , and denote it by ϕ. The Lagrangian is given by:

L(ϕ) =
1
2

∫
R1×S1

((∂x0ϕ)2 + (∂x1ϕ)2)dx0dx1.

A.2. Equation of motion and its solutions. By calculus of variation one can
obtain the equation of motion of the bosonic string as follows.

d

dε

∣∣∣∣
ε=0

L(ϕ+ εψ)

=
1
2
d

dε

∣∣∣∣
ε=0

∫
R1×S1

((∂x0ϕ+ ε∂x0ψ)2 + (∂x1ϕ+ ε∂x1ψ)2)dx0dx1

=
∫

R1×S1
(∂x0ϕ∂x0ψ + ∂x1ϕ∂x1ψ)dx0dx1

= −
∫

R1×S1
(∂2

x0ϕ+ ∂2
x1ϕ)ψdx0dx1.

Hence
∂2

x0ϕ+ ∂2
x1ϕ = 0.

By separation of variables, we get the following form of solutions:

ϕ(x0, x1) = a+ bx0 −
∑

n∈Z−{0}

(
an

n
e−n(x0+

√
−1x1) +

ãn

n
e−n(x0−

√
−1x1)

)

= a+ a0 ln z + ã0 ln z̄ −
∑

n∈Z−{0}

(
an

n
z−n +

ãn

n
z̄−n

)
,

where

z = x0 +
√
−1x1, z̄ = x0 −

√
−1x1.

A field is said to be chiral if it is holomorphic. So the chiral part of ϕ is

ϕ(z) = a+ a0 ln z −
∑

n∈Z−{0}

an

n
z−n.
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In particular,
∂zϕ(z) =

∑
n∈Z

anz
−n−1.

A.3. Energy-momentum tensor. This is defined in this case by

T ij =
∂L

∂(∂xiϕ)
· ∂xjϕ− δijL,(34)

where
L =

1
2
((∂x0ϕ)2 + (∂x1ϕ)2)

is the Lagrangian density. It is easy to see that

T 00 = −T 11 =
1
2
((∂x0ϕ)2 − (∂x1ϕ)2),

T 01 = T 10 = ∂x0ϕ∂x1ϕ.

In particular,
T 00 + T 11 = 0.

Proposition A.1. For ϕ satisfying the equation of motion, we have

∂xiT ij = 0.

Proof. For j = 0 we have

∂xiT i0

=
1
2
∂x0((∂x0ϕ)2 − (∂x1ϕ)2) + ∂x1(∂x0ϕ∂x1ϕ)

= (∂2
x0ϕ)(∂x0ϕ)− (∂x0∂x1ϕ)(∂x1ϕ) + (∂x1∂x0ϕ)(∂x1ϕ) + (∂x0ϕ)(∂2

x1
ϕ)

= 0.

The case of j = 1 is similar. �

Recall

∂z =
1
2
(∂x0 −

√
−1∂x1), ∂z̄ =

1
2
(∂x0 +

√
−1∂x1),

dz = dx0 +
√
−1dx1, dz̄ = dx0 −

√
−1dx1.

Write
T = T ijdxidxj = T zzdzdz + T zz̄dzdz̄ + T z̄zdz̄dz + T z̄z̄dz̄dz̄..

By straightforward calculations, one finds

T zz =
1
4
(T 00 − T 11 +

1√
−1

T 01 +
1√
−1

T 10) = (∂zϕ)2,

T zz̄ =
1
4
(T 00 + T 11 − 1√

−1
T 01 +

1√
−1

T 10) = 0,

T z̄z =
1
4
(T 00 + T 11 − 1√

−1
T 01 +

1√
−1

T 10) = 0,

T z̄z̄ =
1
4
(T 00 − T 11 − 1√

−1
T 01 − 1√

−1
T 10) = (∂z̄ϕ)2.

When the field ϕ is chiral, the nonvanishing component of T is

T zz = (∂zϕ)2.
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A.4. Quantization and the bosonic Fock space. Upon quantization, coeffi-
cients a and an becomes operators on a Hilbert space. For simplicity, we first take
a and a0 to be the zero operators. For n < 0, an is a creator; for n > 0, an is an
annihilator. The Hilbert space B in concern contains a vacuum vector |0〉, i.e.,

an|0〉 = 0

for n ≥ 0, and B has an orthogonal basis of the form

{a−n1 · · · a−nk
|0〉 : n1, . . . , nk > 0, k ≥ 0}.

Furthermore,

[am, an] = mδm,−n(35)

on B.
One can also consider another similar space B̃ on which {an : n ≥ 0} are

annihilators, and {a, an : n < 0} are creators, and

[a0, a] = 1.

A.5. Vacuum expectation values and Wick Theorem. For an operator A on
B or B̃, define the vacuum expectation value (vev) of A by

〈A〉 = 〈0|A|0〉.

Theorem A.1. (Wick Theorem, Version I) Let k1, . . . , km, l1, . . . , ln be positive
integers, then

〈ak1 · · · akm
a−l1 · · · a−ln〉 = 0

unless m = n, and

〈ak1 · · · akn
a−l1 · · · a−ln〉 =

∑
σ∈Sn

n∏
i=1

〈aki
a−lσ(i)〉 =

∑
σ∈Sn

n∏
i=1

kiδki,lσ(i) .

Proof. Easy consequence of (35). �

For a partition µ of length l, let

aµ = aµ1 · · · aµl
, a−µ = a−µ1 · · · a−µl

.

Then we have:

Corollary A.1. For two partitions µ and ν we have:

〈aµa−ν〉 = zµδµν .

A.6. n-point functions. The vev

〈ϕ(z1) · · ·ϕ(zn)〉

is called the n-point function.

Proposition A.2. On the Fock space B̃, we have

〈ϕ(z)〉 = 0,(36)

〈ϕ(z)ϕ(w)〉 = ln(z − w) = ln z −
∑
n>0

(w
z

)n

.(37)
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Proof. The first identity is trivial. The second identity is proved as follows.

〈ϕ(z)ϕ(w)〉

=

〈a+ a0 ln z −
∑

n∈Z−{0}

an

n
z−n

a+ a0 lnw −
∑

m∈Z−{0}

am

m
z−m

〉

= ln z −
∑
n>0

1
n
z−nwn = ln z + ln(1− w

z
)

= ln(z − w).

�

We will mostly be concerned with the vevs on B. Let

β(z) = ∂zϕ(z) =
∑
n∈Z

anz
−n−1.

Proposition A.3. On the Fock space B, we have

〈β(z)〉 = 0,(38)

〈β(z)β(w)〉 = z−2
∑
n≥1

n(w/z)n−1 =
1

(z − w)2
.(39)

Proof. The first identity is trivial. The second identity is proved as follows.

〈β(z)β(w)〉 =

〈(∑
n∈Z

anz
−n−1

)(∑
m∈Z

amz
−m−1

)〉
=

∑
n>0

nz−n−1wn−1 = z−2
∑
n≥1

n(w/z)n−1

=
1

(z − w)2
.

�

A.7. Operator product expansions. We begin with an example. Clearly β(z)β(w)
and : β(z)β(w) : are different. We now consider their difference:

β(z)β(w)− : β(z)β(w) :

=
∑
n∈Z

anz
−n−1 ·

∑
m∈Z

amw
−m−1− :

∑
n∈Z

anz
−n−1 ·

∑
m∈Z

amw
−m−1 :

=
∑
n>0

nz−n−1wn−1 =
1

(z − w)2
.

Hence

β(z)β(w) =
1

(z − w)2
+ : β(z)β(w) : .

Note when z → w, the first term is singular, while the second term is regular in the
sense that it has the limit : β(w)β(w) :. We often rewrite it as

β(z)β(w) =
1

(z − w)2
+ : β(z)β(w) : .(40)
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An expression of this form is often called an operator product expansion (OPE). See
[5] for a nice mathematical treatment of the OPEs, in particular, the proof of the
following important result.

Theorem A.2. (Wick Theorem for OPEs) Let {a1(z), . . . , aM (z), b1(z), . . . , bN (z)}
be a collection of fields such that the singular parts [aibj ] of ai(z)bj(w) are multiples
of the identity operators. Then we have the following OPE:

: a1(z) · · · aM (z) :: b1(w) · · · bN (w) :

Then one has:

: a1(z) · · · aM (z) :: b1(w) · · · bN (w) :

=
min(M,N)∑

s=0

[ai1bj1 ] · · · [aisbjs ] : a1(z) · · · aM (z)b1(w) · · · bN (w) :(i1,··· ,is;j1,··· ,js),

where the subscript (i1, · · · , is; j1, · · · , js) means that the fields ai1(z), · · · , ais(z),
bj1(w), · · · , bjs(w) are removed.

The n-point function can be computed by the Wick Theorem. Recall the energy
moment field is

T (z) =
1
2

: β(z)β(z) :=
1
2

: ∂zϕ∂zϕ(z) : .

We are also interested in

Φ(z) =
1
3!

: β(z)3 :=
1
6

: (∂zϕ(z))3 : .

Using the Wick Theorem, it is straightforward to get the following:

Proposition A.4. We have

T (z)β(w) ∼ β(w)
(z − w)2

+
∂wβ(w)
z − w

,(41)

T (z)T (w) ∼ ∂wT (w)
z − w

+
2T (w)

(z − w)2
+

1/2
(z − w)4

,(42)

Φ(z)β(w) ∼ T (w)
(z − w)2

+
∂wT (w)
z − w

.(43)

Proof. One has

T (Z)β(w) =
1
2

: β(z)2 : β(w) ∼ β(z)
(z − w)2

∼ β(w)
(z − w)2

+
∂wβ(w)
z − w

.

The other two OPEs can be obtained in the same fashion. �

A.8. Vertex operator. The vertex operators

V (z) =: eϕ(z) := exp

(∑
n>0

a−n

n
zn

)
exp

(∑
n>0

−an

n
zn

)
and

V (z) = exp

(∑
n>0

a−n

n
zn

)
eaza0 exp

(∑
n>0

−an

n
zn

)
are introduced by string theorists (cf. e.g. [3]).
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