INTRODUCTIONS TO SYMMETRIC POLYNOMIALS AND
SYMMETRIC FUNCTIONS

JIAN ZHOU

1. INTRODUCTION

Symmetric polynomials and symmetric functions are ubiquitous in mathematics
and mathematical physics. For example, they appear in elementary algebra (e.g.
Viete’s Theorem), representation theories of symmetric groups and general linear
groups over C or finite fields. They are also important objects to study in algebraic
combinatorics.

Via their close relations with representation theory, the theory of symmetric
functions has found many applications to mathematical physics. For example,
they appear in the Boson-Fermion correspondence which is very important in both
superstring theory and the theory of integrable system [2]. They also appear in
Chern-Simons theory and the related link invariants and 3-manifold invariants [8].
By the duality between Chern-Simons theory and string theory [9] they emerge
again in string theory [1], and in the study of moduli spaces of Riemann surfaces
[6].

The following is a revised and expanded version of the informal lecture notes for
a undergraduate topic course given in Tsinghua University in the spring semester
of 2003. Part of the materials have also been used in a minicourse at the Center of
Mathematical Sciences at Zhejiang University as part of the summer program on
mathematical physics in 2003. I thank both the audiences for their participation.
The purpose of this course is to present an introduction to this fascinating field
with minimum prerequisite. I have kept the informal style of the original notes.
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2. SYMMETRIC POLYNOMIALS
In this section we will give the definition of symmetric polynomials and explain

why they are called symmetric.

2.1. Definitions of symmetric polynomials. Let us recall the famous Viete’s
theorem in elementary algebra. Suppose 1, ..., x, are the n roots of a polynomial

" Far" T e ay.

Then
n
e1(T1y. ey XTpn) = E T; = —ai,
i=1
e2(T1,. .., &p) = E Xy Tiy = o2,
1<i; <ia<n
m
em(T1y. .., Tp) = > Ty T, = (1) " am,
1<i1 < <im <n.
n
en(Z1y.o o &pn) = 2122 2y = (—1)"ay.
The polynomial e, (z1, .. ., x,) is called the m-th symmetric polynomial in x4, ..., x,.

It has the following property:

em(xa(l)a v 7ma(n)) = em(xlv e al'n)a

for all permutations o of {1,...,n}. Recall a permutation of {1,...,n} is a one-to-
one correspondence:

o:{l,....,n} —={1,...,n}.

The above property of e,,(z1,...,2,) inspires the following:
Definition 2.1. A polynomial p(z1,...,z,) is called a symmetric polynomial if it
satisfies:

p(x0(1)7 s axa(n)) = p(-Tl, SR ,J}n)7

for all permutations o of {1,...,n}. We denote by A,, the space of all symmetric
polynomials in x1,...,z,.

2.2. Mathematical description of symmetry. Symmetry is clearly a geometric
property, so calling a polynomial symmetric might sound strange. To explain the
terminology, we need to explain how symmetry is described in mathematics. This
involves the algebraic notions of groups and group actions. The concept of a group
was introduced by Galois in his study of algebraic solutions of polynomial equations
of degree > 5.

2.2.1. Groups. Let us examine a geometric example. A regular pentagon is clearly
symmetric, geometrically. The rotation around its center counterclockwise by 72
degrees will take the pentagon to itself. We regard this rotation as a map

T:R? - R?,
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and define for any integer n,
ToTo---oT(n times), n >0,
T =< id, n =20,
T loT lo..-oT (—n times), n <O0.
Note T° = id, so we get a set of five elements:
G={T"n € Z}.
It is easy to see that the composition of maps defines a map
0:GxG—G.
The following properties are clearly satisfied:
(T"oT™)oT" =T o (T"oT"),
T"oid =idoT™ =T™,
TmoT ™™ =T"""oT™ =1id.
Definition 2.2. A group is set G together with a map G x G — G denoted by
(91,92) — g1+ g2, which satisfies the following properties:

(1) (91-92) - 93 = 91 - (92 gs), for 91, 92,93 € G
(2) there exists an element e € G (called the identity element), such that

erg=g-e=g

for all g € G.
(3) for g € G, there exists an element g~! € G (called the inverse element of

g) such that
1

g9 =g g=e
A group is called an abelian group if
9192 = 92 g1,

for g1,92 € G.
Example 2.1. We have seen many examples of groups.

(a) The couples (Z,+), (Q,+), (R,+), and (C, +) are abelian groups for which
0 is the identity element.

(b) The couples (Q*, x), (R*, x), and (C*, x) are abelian groups for which 1 is
the identity element.

(¢c) For any integer n > 1, the set

Zp={0.1,....,n =1} =2/ ~

where p ~ ¢ iff p = ¢ (mod n), together with +, is an abelian group for which 0 is
the identity element.
(d) For any integer n > 1, the set

Zy ={m € Zy|(m,n) =1}

together with x is an abelian group for which 1 is the identity element.
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Example 2.2. We also have many examples of groups in linear algebra.

(a) Every vector space is an abelian group under vector additions, with the zero
vector as the identity element.

(b) Given a vector space, denote by GL(V') the space of linear transformations
from V to itself. Then GL(V) is a group.

(¢) Denote by GL(n,R) (or GL(n,C)) the space of invertible n x n matrices
with real (or complex) coefficients. Then GL(n,R) and GL(n,C) are groups under
matrix multiplications.

(d) Denote by O(n) (or U(n)) the space of nxn orthogonal (or unitary) matrices.
Then O(n) and U(n) are groups under matrix multiplications.

2.2.2. Symmetric groups. A permutation of [n] = {1,...,n} can be regarded as
a one-to-one correspondence o : [n] — [n]. Denote by S, the set of all such
permutations. Then it is straightforward to see that S, together the composition
of maps o is a group, for which the identity element is the identity permutation. It
is called the symmetric group of order n.

Exercise 2.1. For any set S, denote by Aut(S) the set of one-to-one correspon-
dences p : S — S. Prove (Aut(S),0) is a group for which the identity map is the
identity element. Here o denotes the composition of maps.

2.2.3. Group actions. A closely related concept is that of a group action. A moti-
vating example is that an element in .S,, permutes the n roots of a polynomial of
degree n.

Definition 2.3. Let G be a group. A G-action on a set S is a map G x S — S
denoted by (g,s) € G x S+ g-s € S, which satisfies the following properties:

(1) g1-(92-5) = (91-92) s, for g1,92 € G, s € S;
(2) e-s=s,forseS.

Given a group action G x S — S, for any g € G, the assignment s — ¢- s defines
a map p(g). It is easy to see that p(g) € Aut(S) for p(g—!) is the inverse of p(g).
The assignment g — p(g) defines a map p : G — Aut(S). It satisfies:

p(g1 - 92) = p(g1) ° p(g2),
for g1, g2 € G. This inspires the following:

Definition 2.4. A group homomorphism between two two groups G; and Gs is a
map p : G; — Gs satisfying the following property:

p(g1 - g92) = p(g1) - p(g2)
for all g1, g2 € G1.

Conversely, given a map p : G — Aut(9S) satisfying the above properties, one
gets a G-action on S by defining

g-s=p(g)(s),

for g € G, s € S. Hence in the following we will use a map p : G — Aut(S) to
denote a group action.
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2.2.4. Fized point set.

Definition 2.5. Let p : G — Aut(S) be a group action. An element s € G is called
a fized point if

g-s=25,
for all g € G. We denote the set of fixed points in S by SC.

Exercise 2.2. Let V' be a vector space. A homomorphism p : G — GL(V) is
called a representation of G on V. Given a representation of G on V., V& is a linear
subspace of V.

2.3. Symmetric polynomials as fixed points. We now return to the discus-

sion of symmetric polynomials. Denote by Clz1,...,x,] the set of polynomials in
x1,...,T, of complex coeflicients. Define a map

Sp X Clx1,...,xn] — Clay, ..., 2]
by

(U ' p)(Il, s 79377«) = p(xafl(l)a s 7‘T0'*1(’n))7
for o € Sy, p € Clxy,...,x,]. We leave the proof of the following Proposition as
an exercise:

Proposition 2.1. The above map defines a representation of S, on Clzy,...,x,).
The fized points of this action are exactly the set of symmetric polynomials in
T1ye-oy Ty
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3. POINCARE SERIES OF A,

We will show A,, has a natural structure of a graded vector space for which we
can define its Poincaré series.

3.1. A natural grading of C|z1,...,x,]. For simplicity of notations, we will write
R, =Clzy,...,z,].
Recall the degree of a monomial z%' - - zr is
(5T e o T
A polynomial
P21, .. xn) = Z iy, TS i
i1

s

is said to be homogeneous of degree k if a;, ., 7# 0 only when iy +--- 4+, = k.
Denote by R the space of all homogeneous polynomials in z1,...,x, of degree k.
The following characterization of homogeneous polynomials are well-known:

Proposition 3.1. The following statements are equivalent for p € Ry, :
(1) p € AL
(2) pOAx1,. .., zn) = Nep(z1, ..., 2,), for all X € C.
(3) 1%L + -+ T = kp.

Remark 3.1. The vector field F = xla%l 4+ xn% is called the Euler vector
field on C™.

The fact that every polynomial can be uniquely written as a sum of homogeneous
polynomials implies:

R, = @kzoRﬁ.
Lemma 3.1. One has
dim R* = (’””_ 1) .
n—1

Proof. Clearly
{xil"'-Tilnlil+"'+in:k7i17-~-,in >0}
is a basis of R, hence we need to find the number of sequences (iy,...,i,) of

nonnegative integers with i; + - -+ + 4, = k. Each of such a sequence corresponds
to a picture of the following form

71 12 in
Le., among a sequence of k + n — 1 whites balls, change n — 1 balls by black balls.

The number of ways doing this is exactly given by (k :; ﬁ; 1) . O

Corollary 3.1. The sequence dim RY has the following generating function:
1

(1) > dim Ry tF = a0

k>0
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Proof. Expand the right-hand side of (1) as Taylor series:

1 . k+n—1 E_ k+n—-1 k . k .k
Mz( " )tZ( o )tzdlmgnt.
k>0 k>0 k>0
(]

3.2. Graded vector spaces and Poincaré series. The above discussions for R,
inspires the following:

Definition 3.1. A (Z-)grading on a vector space V is a direct sum decomposition
V= @kezvk.

If v € V¥ then we write degv = k. A graded vector space is a vector space
with a grading. Suppose V is a graded vector space with V¥ = 0 for k < 0 and
dim V* < oo for k > 0, we define its Poincaré series by

p(V) =) dimV* ¢
k>0

Exercise 3.1. Let V and W be two graded vector space. Define the following
gradingon V@& W and V@ W:

(2) Vaew) =vkew",
(3) (VoW =@ g=r VP @ Wi

Suppose p(V) and p (W) can be defined, then p,(V @ W) and p,(V x W) can
defined and we have

pe(VeW)=p(V)+p(W),
pe(Vo W) =p(V)p(W).

3.3. A natural grading on A,. For a nonnegative integer k, denote by A the

space of homogeneous symmetric polynomials in z1, ..., z, of degree k. Clearly
AF = A, NRE,

and
A, = @kZOA]:l.

We are interested in computing dim A¥ and their generating function. For this
purpose we have to first find a basis of A¥. As will be seen later, there are many
natural choices of bases, and the study of relationships among them is an important
aspect of the theory of symmetric functions. For now, we construct a basis from

the monomial as follows. Define a map S : Clzy,...,z,] — Clay,...,2,] by
(Sp)(xl’ ce 7.’1,‘n) = Z p(xa(l)a s 7xa(n)>'
ocS,

Then clearly Sp € A,. In particular, for a sequence of nonnegative integers

Ay An),

Al DR A‘”‘ f— Al DRI A/n,
S(‘Tl T, )* E : xa(l) xa(n)
Uesn
is a symmetric polynomial. Since we also have

Ao Ao (n
S(mi\l...mi\ln): E :wl (1)~-~$n ( )7

oS,
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it follows that for any permutation (5\1, e :\n) of (A1,...,An), we have

S(yt ) = S(ayt ).

3.4. Partitions. Hence we will only consider sequence A\ = (A1,...,\,) with
A2 A= 2>, 20,
We will write
Al = A1+ + A
When |A| = k, we will say such a A is a partition of k, and write A F k. The number
of nonzero A;’s is called the length of A, and is denoted by I(A\). We will use the set
P(k,n) ={AFEkll(N) <n}
of partitions of k£ with length < n. For a partition A, define
mi(A) = [{j|A; = i}
We will often write a partition also in the form of
1N gma(A) L pme(A) L

In this notation, we then have

k
Pk,n) = {1 - k™ > im; =k, m; < n}.
=1 7

In the following, we will often omit the zero’s in a partition.

Example 3.1. (1) There is only one partition of 1: 1 = 1, it has length I(\) = 1,
and my(\) =1, m;(\) = 0 for i > 2, hence it can also be written as 11.

(2) There are two partitions of 2: (2) and (1,1). For A = (2), we have [(\) = 1,
ma(A) = 1, m;(A\) = 0 for i # 2, hence A can also be written as 2!. For A = (1,1),
we have I(A\) = 2, m1(A) = 2, m;(A) = 0 for ¢ > 1, hence A can also be written as
12,

(3) There are three partitions of 3. For A = (3), I(A\) =1, m3(A) =1, m;(A) =0
for i # 3, hence A can also be written as 3!. For A = (2,1), we have [()\) = 2,
mi(A) = ma(A) =1, m;(\) = 0 for i > 2, hence A can also be written as 112!, For
A =(1,1,1), we have I(A) = 3, m1(A\) = 3, m;(A) = 0 for ¢ > 1, hence A can also
be written as 13.

3.5. Monomial symmetric polynomials. For a sequence o = (aq,...,q,) of
nonnegative integers, define
=t ane.
Given A = (\1,...,\,) € P(k,n), consider the symmetric polynomial S(z*). For
example, let A = (1,1) (where we have omitted n — 2 zero’s), then in Clz1,...,z,]
we have
S(x122) = 2(n — 2)! Z T,
1<i<j<n

It is more natural to ignore the factor 2(n — 2)! and consider
Z XTilyj.
1<i<j<j<n

In general for A € P(k,n), define
ma(T1,...,2Tpn) = Zx",
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where the sum is taken over all distinct permutations of A\. This is a symmetric
polynomial, called the monomial symmetric polynomial corresponding to .

Example 3.2. For example,

k k
My (L1, .0, Tp) =27 + -+ 2y,
_ 3,2 3,2
m(3,2)(901,---,$n) = E (%‘Ij +xixj)7
1<i<j<n
_ 2,2
m2,2)(T1,. .., %) = § Lqlj-
1<i<j<n

We leave the proof of the following Proposition as an exercise:
Proposition 3.2. The set
{mx(z1,...,z)|A € P(k,n)}

is a basis of A¥, hence
dim A* = [P(k,n)|.

3.6. Young diagrams. In the above we have reduced the problem of finding the
Poincaré series of A,, to the problem of finding the generating series of the numbers
of partitions of length < n. The latter is still not easy to solve at first sight. But
there is a related problem that has a very easy solution, i.e., the problem of finding
the numbers of partitions whose parts are < n, more precisely, the problem of find
the number of elements in the following set:

P'(k,n) = {1 ™| > im; = k}.
i=1

We have
Proposition 3.3. The generating function of |P'(k,n)| is

— / n k:;
2 1Pkl = Fr =y

Proof. This is proved by using the series expansion:

1 o0
T2t

as follows.
1 n [e%s) . o) . 'S}
il | DL D DR e DDA UL
i=1 i=1m;=0 M1 ,yeneyMpy =0 k=0

O

We will find a one-to-one correspondence between P(k,n) and P’(k,n). This
can be achieved by exploiting a graphical representation of a partition as follows.
Given a partition A, the Young diagram of A consists of I(\) rows of adjacent
squares: the i-th row has \; squares, ¢ = 1,...,l(\). The first square of each row
lies at the same column. We will often denote also by A the Young diagram of .
It is clear that A has |\| squares. The transpose of a Young diagram A, denoted
by X, is the Young diagram obtained by transposing the columns and rows of \.



10 JIAN ZHOU

Now P(k,n) corresponds to the set of Young diagrams with k squares and < n
rows, P’(k,n) corresponds to the set of Young diagrams with k squares and < n

columns. Hence the map A — ) establishes a one-to-one correspondence between
P(k,n) and P'(k,n).

Corollary 3.2. The Poincaré series of the A, has the following generating func-
tion:
1

(4) pe(An) = Mo a—t)
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4. RING GENERATORS OF A,

In this section we will give interpretations of formulas (1) and (4) in terms of
rings and generators.

4.1. Rings. On the space A, of symmetric polynomials in zi,...,z,, one can
define not only the addition, but also the multiplication. The standard properties
of additions and multiplications of numbers are satisfied.

Definition 4.1. A ring is a set R together with two maps
+:RxR—R
and
-:RxXR— R,

with the following properties: (R,+) is an abelian group, and

(z-y)-z=z-(y-2),

(@ty) z=a-zty-z

zo(zty =z-x+z-y
for x,y,z € R. A ring R is said to be commutative if

rT-yYy=y-,
for z,y € R. An identity of a ring is an element 1 € R such that
lz=z-1=uz,
for all x € R. A graded ring is a ring R with a decomposition
R=0R,
such that each R, is closed under +, and
Ry, - Ry C Ry
Example 4.1. (1) (Z,+,"), (Q,+,"), (R,+,-), and (C,+,-) are all commutative
rings with identity.
(2) For any positive integer n, (Z,,+, ) is a commutative ring with identity.
(3) For any positive integer n, the space C[x, ..., ,] of polynomials in z1, ..., z,

with coefficients in C is a graded commutative ring with identity under additions
and multiplications of polynomials.

For us the following Proposition is relevant:

Proposition 4.1. For any positive integer n, (A, +,-) is a graded commutative
ring with identity.

4.2. Ring generators and Poincaré series.

Definition 4.2. A ring R is said to be freely generated by elements a4, ...,a, € R
over C if every element can be uniquely written as a polynomials in ay,...,a,. In

this case, we will write
R =Clay,...,an]

Theorem 4.1. Suppose R is a graded ring freely generated by homogeneous ele-
ments ay,...,an,, and dega; =m;, i =1,...,n. Then we have

1
PR = Ty
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Proof. Note
Cla;] = ®Ca,
hence it is straightforward to see that
1
_ km; __
pt((C[ai])th Tl
k=0
It is easy to see that as graded vector spaces,
R =Cla1] ® - --Clay,].
Hence by (3),
= 1
pi(R) = pi(Cla]) = =
il;[l [[im (1 —tme)
O
For example, C[x1,...,x,] is freely generated by x1,...,z, over C, and all z;
have degree 1. Hence
1
Clz1,...,2p)) = ———.
pt( [mla , & ]) (1_33)”

This recovers (1).

4.3. Application to A,,. In view of Theorem 4.1, (4) is a corollary of the following:
Theorem 4.2. For any positive integer n,
A, =Cley, ... en].
Before we give a proof, note this Theorem means that
fer - emnim, € Zy )

is a basis of A,,. Here Z is the set of nonnegative integers. Now m = (mq,...,m,) €
7 corresponds to a partition X € P’(k,n), where

n
i=1

For X' € P'(k,n), define
ex (L1, . yxn) =€l (@1, 0, Tpn) e (X1, .., Tp).
If X = (M, A5, ..., AL), then clearly we have
ex =ex; ey

Hence to prove Theorem 4.2, it suffices to show that

{extrer k)
is a basis of AF. Recall

{m,\},\ep(k,n)

is a basis of A¥. Hence Theorem 4.2 follows from the following:
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Lemma 4.1. Let A\ € P(k,n), then

ey = my + Zawmu,
I
for some nonnegative integers ay,,, where the sum is over over partition pp < A (i.e.,
the first nonvanishing \; — p; is positive).

This can be proved by using the lexicographic order of polynomials. It will be
left to the interested reader.
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5. COMPLETE SYMMETRIC POLYNOMIALS

5.1. Complete symmetric polynomials and their generating function. For
each k > 0, the complete symmetric polynomial is the sum of all monomials of
degree k:

hi(z1,...,x,) = Z gh g,
dy ot dn=k
In particular ho(z1,...,2,) = 1. It is not hard to see that
hi(x1,...,2n) = Z ma(x1, ..., Zn).
AeP(k,n)

Define the generating function for hy by:
H,(t) = X psohu(@r,. .. T )R

Then we have

1
(5) H, (t) = m‘fl e xdntdl'f'"‘-i-dn - -
' d1,-§120 ! H?:1(1 — tx;)

5.2. Relationship with elementary symmetric polynomials. Consider the
generating function of elementary symmetric polynomials:

n n

(6) En(t) = ) eilwr,...,zn)t = [[(1+tz:).
i=0 i=1

Celarly we have

H)E(-t) =1,
or equivalently,

E

(7) > (1) erhnr =0

r=0
for all £ > 1. Here we have set

er(x1,...,2,) =0

for r > n.

5.3. Determinantal formulas. We now solve (7) inductively. For k = 1,

hi—e1 =0
hence
hi =e;q.
For k =2,
ho —ejhy +e3 =0,
hence

€1 €2

ho = €2 — ey =
2 1 2 1 €1
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Inductively one finds:

15

e1 e e3 eh_1 €k
1 e1 es €k—2 Ck—1
0 1 e €g—3 €k—2
(8) hp=1]- - - : | =det(er—ivj)i<ij<n
0 0 0 e €1 €9
00 0 - 1 e
By symmetry between h and e in the formula (7), one also get
h,l hQ hg hk—l hk
1 hy ho hi—2 hr_1
0 1 h1 hk73 hk*Q
(9) € — | - . . . . = det(hl—i+j)1§i,j§n-
o o0 0 --- h1 ho
o o0 0 --- 1 h1

Here we have used the convention that
ei(x1,...,xz,) =0

for i <0 ori > n.

5.4. An involution on A,. The symmetry between h and e suggests the intro-

duction of the following map w : A,, — Ay:

mi m —
W D Gmypm, el E) =

M1,y yMip

E a1 m
am1a~-~>mnh1 T hn "

M1y...,Mp
It has the following properties:

(a) w is a ring homomorphism, i.e.

w(p +q) = w(p) +wl9),
for p,q € A,,.
(b) w(e;) = h; and w(h;) = e;.
(c) w? =id.

(a) is trivial. The first identity in (b) is by definition. For the second identity,
apply w on both sides of (8) then use (9). (c) is a straightforward consequence of
(a) and (b).

As a corollary, we see that

w(p-q) =w(p) w(q),

An = C[hl,...7 n]
In other words, if we define for X' = (\},..., \}) € P'(k,n),

hov (1, @n) = ha (21,0 2n) - ha (@1, @0),
then
{har}arepr (ko)

is a basis of AE.
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6. NEWTON POLYNOMIALS

6.1. Newton polynomials and their generating function. For r > 1, the r-th
Newton polynomial (power sum) in x1, ...,z is

pr(T1, . xp) =2+ .
The generating function for them is

Po(t) =Y pelar, ...zt = Z > apr!

r>1 i=1r>1

(10) -
—Z €Z; - ilog 1
—l-xit dt UL (- wit)

6.2. Newton formulas. By comparing with (5) and (6), one gets:

H(t) _ EL(-1)
H,(t)  En(-t)

P (t) =

By applying w, one gets:

or equivalently,

One also has

H;z(t) = Pn(t)Hn(t)v E;z(ﬂ = Pn(_t)En<t)'
Equivalently,
k
(11) khy = Zprhkfm
r=1
k
(12) kek =Y (1) 'prex—-
r=1

These are called the Newton formulas.

6.3. Determinantal formulas. We now inductively solve (12). For k = 1,
€1 =DP1.

For k = 2,

b1 D2

2e9 = p1e1 —p2 = 1 |

For k =3,

b1 P2 P3
3les =2prea —prer +p2 =2 p1 pof.
0 1 p
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By induction, one finds

4! b2 b3 -+ Pk-1 Dk
k=1 p1 pa - pr-2 Pr-1
0 k=2 p1 - pr-3 Pr-2
(13) kley = ' ' '
0 0 0 p1 P2
0 0 0 1 D1
One can also rewrite (12) as
k—1
PE = Z(—l)k_’“_lek,rpr + (=1)* ke,
r=1
For k=1,
P1 = €1,
For k = 2,
—e 9% — €1 262
P2 = e€1p1 2= e
For k = 3,

€1 €9 363
p3=e1ps —eap1+3e3 =11 e 2eq|.

0 1 €1

By induction, one finds

e1 ey ez -+ €p_q ke,

1 €1 €2 - €k_2 (k — 1)6]@,1

0 1 (S €k—3 (k’ — 2)€k—2
(14) o= . . . .

0 0 0 e €1 262

0O 0 0 --- 1 e1

By applying w on both sides of (13) and (14), one gets:

b1 b2 Y%

_(k - 1) P1 b2

0 _(k - 2) b1

(15) E'hy = ' ' '
0 0 0

0 0 0

Pk—1 Pk

Pr—2 Pr—1

Pk—3 Pk—2
b1 D2

-1 m

17
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and
hi hy hs -+ hi_1 khy,
1 hy hy -+ hg—o (k—1)hgp_
0 1 hy -+ hgp_s (k—2)hg_2
(16) (—1)k_1pk |- . . . .
0 0 o --- h1 2ho
0 0 o --- 1 hy

As a corollary, we have
An =Clp1,...,pnl
(This is a straightforward consequence of (13) and (14).) In other words, if we
define for ' = (A\},...,\,) € P'(k,n),
P (T1, ., Ty) = p/\’l(ml, ey Tp) 'PA;(JJl, ey Tn),
then
{pA'}xeP/(k,n)
is a basis of A%,
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7. SCHUR POLYNOMIALS

So far we have only considered symmetric polynomials. In this section we will
consider anti-symmetric polynomials, and their relations with symmetric polyno-
mials. This leads us to the Schur polynomials.

7.1. Anti-symmetric polynomials. Recall a permutation can be written as a
product of transpositions. Consider the parity of the number of transpositions in
such a product. If it is even (or odd), then we say the permutation is even (or odd).
The sign of a permutation is defined by:

o is even,

1
—1)° = ’
(=1) {—1, o is odd.

Definition 7.1. A polynomial p(z1,...,z,) € C[z1,...,z,] is said to be antisym-
metric if

p(xo(l)a s axo’(n)) = (_1)Up(x17 s ,J)n),

for o € S,,. Denote by A,, the space of all antisymmetric polynomials in z1, ..., z,.
Example 7.1. For any nonnegative integers dy,...,d,, let
d=(dy,...,dn)
and
xtlil xiiz . x(fn
ad(xl, AR xn) =
x‘fj xff zi"
is antisymmetric. In particular, let § = (n — 1,n — 2,...,1,0), the Vandermonde
determinant
Ty -1 Ty -2 ry 1
Az, ... z0) = = H (zi x])
. 1<i<j<n
=t gn—? Ty 1

is antisymmetric.
It is straightforward to verify the following:

Proposition 7.1. As a subspace of Clxy,...,x,], the space A, has the following
properties:

o A, is closed under additions.
e A,-A,CA, and A, - A, CA,.

It is instructive to recall the following definitions from algebra.

Definition 7.2. Let R be a commutative ring, an R-module is an abelian group
(M, +) together with a map R x M — M denoted by

(a,2) —a-x
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for a € R, x € M, such that
a-(x1+x2)=a-x1+a- 2z,
(a1 +az) - x=a;-z+as-zx,
(a1-az) -x=ay-(az-x),
for a,a1,a2 € R, x,x1,20 € M.
One can easily define R-module homomorphisms and isomorphisms.

Example 7.2. Let R be a commutative ring, then R®" = R @ --- R (n times)
is automatically an R-module. An R-module isomorphic to R®" is called a free
R-module of rank n.

Definition 7.3. A superalgebra over C is a C algebra A with a Z,-grading
A=A A
such that
AV A% c A, A% A c AL, Al AY AL Al A ¢ A
A superalgebra is said to supercommutative if
a-b= (_1)\a\-|b\b -a,

for homogeneous element in A. Recall an element a € A is said to be homogeneous
if a € A’, and in this case we will write |a| = i.

Hence A, is a A,-module. Furthermore, A & A,, is a superalgebra, though not
supercommutative.

7.2. A, as a A,-module. The main result of this subsection is the following:
Theorem 7.1. For any positive integer n, A, is a free A, -module of rank 1.

We will need the following easy Lemma:
Lemma 7.1. Suppose p(x) € Clx]. Then

pla) =0
for some a € C if and only if (x — a)|p(x).
Theorem 7.2. Given p(z1,...,x,) € A, we have
Axy, ..o, Tn)p(X1, ... 2n) € Ap.

Conversely, given any q(x1,...,T,) € Ay,

q(x1,... ) €A,

A(z1,...,25)
Proof. The first statement is obvious. For the second statement, we first show that
(17) q(w1, .. T0)|z=2; =0,

for 1 <1i < j < n. Indeed, let o be the transposition of ¢ and j. Then for ¢ € A,
we have

q(@1, . @iy Ty &) = —q(T1, . T Ty, T
One easily gets (17) by taking x; = z;. Hence by Lemma 7.1,

(xi - Cﬂj)‘q(fﬂl, s 739%)7
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therefore,
Az, ..., z0)|g(xr, ..y Tp).
It is straightforward to see that ¢/A is symmetric. O

Now we construct maps F': A,, — A, and G : A,, — A, by:

F(p) =pA, G(q) = q/A,
forp e A, q € A,. It is easy to see that F' and G are A,-module homomorphisms
and they are inverse to each other. This proves Theorem 7.1.

7.3. Schur polynomials. Similar to the introduction of monomial symmetric poly-
nomials, one can introduce the “antisymmetric monomials” as follows. Introduce
an operator

A:Clzy, ..., 2] = Clzy, ..., zy]
by

(Ap) (@1, ) = D> (“1)7p(Zo(1), - s Ta(n))-
oceSy
It is easy to see that Ap € A, for all p € C[zy,...,x,]. For example,

Al e = 3 (1)l = Balrn ),
o€Sy

where d = (dy,...,d,).
Now similar to the argument that monomial symmetric polynomials

{mx|X € P(k,n),k > 0}
form a basis of A,, one can prove that
{Ay(z1,. .., 2,)|d = (dv,...,dn) €Z",dy > --- > d, >0}
is a basis of A,. Under the isomorphism F', they correspond to a basis
{Ag(x1, ... xn)[As(x1, .. xn)|d = (dy,...,dy) €Z",dy > - >d, >0}
is a basis of A,,.
We leave the proof of the following Lemma to the reader.
Lemma 7.2. Suppose d € Z" satisfies
dy >--->d, >0.

Define
No=d; — (n—i),
and
A=A, ),
i.e.,
A=d—4.

Then X is a partition of length < n.

Definition 7.4. For a € P(k,n), the Schur polynomial associated to X is defined
by:
_ A)\+5(x17 s 7zn)
5)\(9317”'51‘71)* Aé(mla---axn> :

From the above discussions, we have already given the proof of the following:



22 JIAN ZHOU

Proposition 7.2. For any positive integer n,

{sa|]A € P(k,n)}

is a basis of AF.

7.4. Generating series of Schur polynomials. Consider the following generat-

ing series of Schur polynomials:

S(-Tla s Ty Y1,y ,yn)
:vill
= 2 ! |
dy,...,dn>0 A(xl,-..7xn) .
zh

n

Note for each A € P(k, n), the coefficient of

n
Aj+n—j
IIv"
=1

in S(x1,...Tn,Y1,...,Yn) is exactly sx(z1,...

(18) S(T1,. ooy Tny Y1, -5 Yn) = Ay, .-
Theorem 7.3. We have:
(19) S(T1,. ey Tny Y1y ey Yn) =

A(y17~~~

Ty
d dn
Yty
dn
‘rn

,Zn). 1t is not hard to see that

+Yn) Z sx(@)sa(y).

1(\)<n

. Yn)

ngi,jgn(l - 3312/3)

Proof. By standard properties of the determinant we have:

S(T1,y oy Tny Y1y -« - Yn)

Sayso(@1yn)™

B A(xlﬂ ’xn> .
Zdlzo(xnyl)dl
=T

— 1 .

B A(mlv ,CL‘n) .
_ 1
i

2 a,>0(T1yn) "

ZanO(x”y”)dn

1—z1yn

1—zpyn
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The determinant can be evaluated as follows. Subtract the last row from the ¢-th
row (i > n), and use common denominators. We get:

1 ... 1
1—z1y1 1-z1yn
1 ... 1
1—zpy1 1—znyn
Y1 (T1—Tn) . Yn(T1=Tn)
(I=z1y1)(1-zny1) (1=z1yn)(1=znyn)
Y1(Tr—1—Ty) L Yn(Tn—1—Tn)
(1*93'”—1?}11)(1*37"1/1) (lfacnﬂyr,i)(lfwnyn)
1—zny1 e 1—xnyn
Y1 e Yn
1—z191 1—z1yn
n—1 .
_ oy (@i — ) . . :
H1gjgn(1 —TnYi) |__wm . __wm
1—xn_191 1—-xpn_1Yn
1 e 1

Now subtract the last column from the j-th column, use common denominators,
and simply as above. We get:

1 DY 1
1—-z1y1 1—x1Yn

L.
1—zny1 1—znYn

Y1 ... — Yn
n—1 1—z1y1 1—z1Yn—1
_ [limy (i — 20)(yi — yn)
(1 —znyn) ngjgnfl(l — zny;)(1 = 2;5yn) " y"
1—zpn_1y1 o 1=Tpn_1Yn—1

Hence by induction one can show that

1 ... 1
1-z1y1 1—z1yn
' ' :A(a:l,...,xn)A(yl,...,yn)
. .. . ngi,jgn(l — zy;)
1 1
T—any1  I-znyn
The proof of the Theorem is complete. O

Corollary 7.1. We have

1
(20) m = l(g;n sx(®)sa(y)-

i=1

7.5. Jacobi-Trudy formula. It is very interesting to study the relationship be-
tween the basis given by Schur polynomials and the bases given by other types
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of symmetric polynomials. For example, there are integers K, (called Kostka
numbers) such that

S\ — E K)\,Lm#.
7

These numbers are interesting objects to study in algebraic combinatorics. There
are also integers X,)l such that

(21) Pu= Y XpSx:
A

X)\
(22) S)\ = Z fplt,
I H

where
z, = H ™ ().

The integers {Xﬁ} give the character table of the symmetric groups. For details,
see §77.

In this subsection, we consider the relationship between Schur polynomials and
elementary or complete symmetric polynomials.

Theorem 7.4. (Jacobi-Trudy identities) For any A € P(k,n), the following iden-
tities hold:

(23) sa(T1,. oy m) = det(hy,—ivj)i<ij<n:

Proof. Recall

Alys,- o) = > (=07 [ w79,
j=1

ocES,

i=1

1
_—— = Z hm(xl,...,xn)tm.
H (1 —.’Eit) m>

Hence by (19), we have:

€S, j=1 j=1
n
i4n—o(j
S 0 [ a0,
o€Sn Jj=1

Consider the coefficients of

we get

sa(@) = > (-1)° H b, —jto(i) ()

ocES,
= det(hx—itj)i<ij<n-
This proves the Jacobi-Trudy identity. [
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There is another Jacobi-Trudy identity:
(24) s,\(xl,...,xn) = det(e,\;_i_,_j).

Its proof is more complicated. The interested reader can consult [7]. From (23)
and (24), one easily see that
w(sr) = sa.
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8. SYMMETRIC FUNCTIONS

Most of the results above does not depend on the number of indeterminates.
Hence one can consider the limit of infinitely many indeterminates. This leads to
the space of symmetric functions.

8.1. Space of symmetric functions. For m > n, define py, , : Ay — Ay, by

p(x1, ... &m) — p(x1,...,2n,0,...,0).
Define
A" =lim AL

An element of AF is a sequence

{fo(zy,. .. 2,) € AF}
such that
fn(xh e 71.717170) = fnfl(l.la .. axn71)~

One can also regard it as a function in infinitely many variables:

f(l‘l,...,.’L‘n,...),
such that
flx1, .o 20, 0,...) = fu(z1,. .. 2p)

for all positive integer n.
Define
A= @kzoAk.
This is the space of all symmetric functions.
Most of the results in the preceding sections can be easily generalized to A, so
we will leave their exact forms mostly to the reader. One can easily define my, ey,

hx, px, and sy for infinitely many variables. They form bases of A. Furthermore,
A is a graded ring with

(25) ) =T

and one can take {e1,...,en, ...}, or {h1, ..., by, ...}, o0 {p1,...,Pn,...} as free
ring generators. Recall the Dedekind eta function is defined by:

n(g) =¢"* [T - q™).

n>1
8.2. Three series expansions.

Theorem 8.1. The following identities hold:

(26) Hz’,j>1(i —ziy) XA: ha(z)ma(y) = ;mx(z)hx(y)

(27)

S L @)

PR

(28) = 3 sa@)sa().
A
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Proof. Recall

Hm(l o) = 2

r>0

hence we have

=11 > A @

Hw>1 (1 = iy;) F>1r;>0
= D [Im @y =D ha(z)maly)
J A

This proves (26).

Recall
1 -3 tog
—_———— = exp og(l — z;y)
[Li>:(1 —ziy) i>1
1 1 .
= exp [ [[Y 2 @w)") | =exp [ D0 coel)y” |
i>1k>1 k>1
hence
1 1 ()
= €Xp 7. Pe\T)Y
I j>1(1 ) =1 k1 k !

mylk™me
k>1 k>1mg>0
1
= Y —m@p)
2z
A
This proves (27).
One can prove (28) by taking n — oo in (20). O

8.3. Hermitian metric on A. Regard z; as real variables. The complex conju-
gation defines an involution on A.
We now define a scalar product on A by requiring
<h/\7mu> = (5,\,;,,,

for all partitions A and p. Furthermore, (-,-) is required to have the following
property:

(a1 f1 + az2f2,9) = a1(f1, 9) + a2(f2, 9),

(f,b1g91 + baga) = b1 (f, 91) + ba2(f, g2)-
We will show show below this scalar product is actually a positive definite Hermitian
metric.
Lemma 8.1. Fork >0, let {uy} and {vy} be two bases of A*, indexed by partitions
of k. Then the following are equivalent:

(a) (ux,vu) = Oxp, for all A, p.
(b) >y ua(z)vu(y) = Hi,jZl(l —zy5)
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Proof. Let A= (ay,) and B = (b,,) be two matrices such that
uy = Zaxphp, vy, = Zb,wmg.
P o

Then we have

(ux, Uu> = Z a)\PBMN
P

hence (a) is equivalent to
Z axpbup = Oap,
P

ie.,

AB* =1.

Zu,\(x)@(y) = ZZZaApB/\ahp(‘r)mU<y)7
X p o

On the other hand,

A
1

Hi,jzl(l — TiYj

Hence (b) is equivalent to

)= > hal@)ma(y).
By

Z akpb)\a = 5paa
A

ie.,

B*A=1.
Therefore (a) and (b) are equivalent. O
Corollary 8.1. We have
(PAsPu) = Oxp2n,
(87, 3u> = Oxp-
Proof. Straightforward consequences of (27), (28) and Lemma 8.1. O
Corollary 8.2. The scalar product (-,-) is a positive definite Hermitian metric on

A. Furthermore,
(w(u),w(v)) = (u,v)

foru,v e A.
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9. APPLICATIONS TO BOSONIC STRING THEORY

In this section we will show that A admits a natural structure of a bosonic Fock
space. We will also consider some consequences of this fact.

9.1. Heisenberg algebra action.

Definition 9.1. A Lie algebra is a vector space g together with a bilinear map

[]:ex8—g,

such that

[Xa Y} = _[K X]v

(X, [Y, Z]| = [[X, Y], Z] + [V, [X, Z]],
for X,Y,Z € g.

Let b be the vector space spanned by {«, : n € Z} and c. Define an antisym-

metric bilinear form [-, -] : h x h — h by requiring:
(29) [O{m, an] = mém,—nama
(30) [07 am] = Oa
(31) [e,c] =0,

for myn € Z. It is easy to show that (h,[-,:]) is a Lie algebra. It is called the
(infinite) Heisenberg algebra.
9.2. Bosonic Fock space, creators, and annihilators.
Definition 9.2. A linear representation of g is a linear map
pig— End(V),

such that

p([X,Y]) = p(X)p(Y) = p(Y)p(X),
for all X,Y € g. We will often write p(X)v as Xv.

A highest weight representation of h is a representation V' of §, which has the
following properties. There is a vector |0) € V, called the vacuum vector, such that

a,|0) =0
for n > 0; V is spanned by elements of the form (nq,...,n; > 0):
(32) Qpy * Qpy, |0>7

and c¢ as by a multiplication by a constant. A highest weight representation is also
called a bosonic Fock space.

The operators {a_y,}n>0 are said to be creators, and the operators {ay, }n>0
annihilators. Physically, a vector of the form (32) represents a state which contains
particles a_p,, ..., a_n,. The effect of the action of the operator a_,, on this vector
is the addition of a particle a_,,, and the effect of the action of the operator a,, is
the removal of a particle a._,,. This explains the terminology.
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9.3. Heisenberg algebra action on A. We now show A has the natural structure
of a bosonic Fock space. Define a,, : A — A as follows:

p_n(z)- f(x), n<O,
anf =140, n =0,
n%, n >0,
and let ¢ : A — A be the identity map. It is straightforward to see that this defines

an action of the Heisenberg algebra on A, for which 1 is the vacuum vector. Since
A is spanned by {px}, it is a bosonic Fock space.

Proposition 9.1. With respect to the Hermitian metric on A, one has
o, = a_p,
¢ =c.

Proof. For the first identity, it suffices to prove the case of n > 0.

8p/\ —_ m; m;
<anm,pu>=<n@,pu>=<nmn<x>p;""“) er ™ TLer )

i#n
= nmn()\)(Smn(A),Lmn(M)nm"(k)_l(mn()\) — 1)! . H 5mi()\),mi(p)imi(>\)mi()\)!
i#EN
= 5mn()\)’mn(H)+1nm"(k)mn()\)! . H 6mi()\),mi(y,)im’i()\)mi()\)!
i#En

= <p)\apnp#> = <p)n057np,u>c
The second identity is trivial. O

9.4. Normal ordering and Virasoro algebra action on A. The grading by
degrees on A,, induces a natural grading on A:

degpy = |\

This grading can be reformulated in terms of the operators «, as follows. First
consider the generalized Euler vector field:

LO:ann 0

e
n>0 Pn
It can be rewritten as:
Lo = E A Q.
n>0

This expression is not symmetric since the sum is only taken over positive integers.
It suggests one to consider the sum

K = Z Ol

neEZ

Unfortunately, one encounters an infinitity when one considers

Kp,\.

K|0) = Za,nanm) = Zn|0>

n<0 n>0

For example,
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To avoid such situations, physicists introduce the normally ordered product defined
as follows:

:anl...ank ::anil ...anik’

where n;; <--- <mn,, is a permutation of ny,...,ng. It is then easy to see that
1 1
=§Z:a_na” :25 Z N0 77107 N
nez k+1=0
Introduce

1
ani Z ooy .
k+l=n

Remark 9.1. At first sight the definition of L,, involves an infinite sum and there
might be an issue of convergence here. Since for any v € A, a,,v = 0 for n sufficiently
large, hence : ayaqv = 0 for sufficiently large k or [, and so L,v actually involves
only finitely many nonvanishing : axa; : v. We will implicitly use this fact below.

We leave the proof of the following Lemma to the reader.
Lemma 9.1. Let V be a vector space. Define [-,-] : End(V) — End(V) by
[A,B] = AB — BA.
Then one has

[A, B] = —[B, 4],

[A,[B,C] = [[A, B],C] + [B, [A, (],
[A, BC] = [A, BIC + B[A, C],
[AB,C) = A[B,C] + |A,C|B

From the definition of the normally ordered product and the commutation rela-
tion (29), one easily verifies the following:

Lemma 9.2. We have

(33) {aman — M, —nid, m>0,n <0,
Am Oy 1=

Ay Oy otherwise.
In particular,
[A,: aman, 1] = [A, aman],
for A € End(A), m,n € Z.

Theorem 9.1. One has the following commutation relations:

[am; Ln] = MQm4n,
m3 —m

[Lma Ln] = (m — n)Lm+n + T6m7_n.
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Proof. By Lemma 9.2 we have
1
[evm, - awar ] = 5 > fam, akay]
k+l=n

[ama Ln] =

o
P
[
3

([atm, ar]ay + arfam, o)

o
P
[
3

(mém,—kal + ag - mém,—l)

NI—= N~ N

(]

k+l=n
= Mam4n-

To prove the second identity we assume m > n without loss of generality.

1
[Lm» Ln] = 5 Z[ QO — O 2, Ln]
kEZ
1 1
= 3 Z[amfkaka Ly,] + 3 Z[a,kaerk,Ln]
k>0 k>0
1
= 5 Z(am—k[aka Ln] + [am—kv Ln]ak
k>0

+a—k[am+k7 Ln] + [Oé_k, Ln]am+k)

1
= 5 Z(am—k : kak—i—n + (m - k)am+n—kak
k>0

o (m+E)amintk + (—k) 0 ktnQmtk)

= 5 Z(k Oy Oy - —k: Ot kO fip -
k>0
+(m — k) S Qman—kQk  H(m+ k) aga_y 1)

1
3 ((g—n) :apag : +(—qg+m) : apagy :) +
ptg=m+n

)_|

m3—m

o Om,—n id

3 _
= (m - ’I’L)LO + %&n,—n id.

9.5. Vertex operator. Consider the generating series of operators a,:
= Z anz "L
neZ
This is a “field of operators”. Integrating once, one gets another series:

Y(z2)=C+aolnz+ Z a;nz" - Z %z*”.

n>0 n>0

For simplicity, we will take C' = ag = 0. Now note

y e —127(0) = Zp"": = log H(2).

n>0 n>0
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This suggests one to consider

Oy

ex

()
n>0

its “adjoint”

!
exp (Z :;;”) ,

n>0
and the field:

X(z) =i expY(z) := exp (Z a;";;") exp (Z —O;L"z_n> )

n>0 n>0
This is the vertex operator in free bosonic string theory. Write:

X(z) = ZXHZ*”.
nez
It is not hard to see that

X(2)|0) = H(z).
Le.

)

X_,|0) = hy,.
In general, one has [4]
Theorem 9.2. For any partition Ay > --- > A, > 0, one has
Xoa - X, 10) = s

33
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APPENDIX A. Basics oF FREE BOSONIC STRING THEORY: THE PHYSICAL
APPROACH

In this section we sketch some basics of the physical theory of the free bosonic
strings.

A.1. Lagrangian of free boson on cylinder. The trajectory of a closed string
moving in the Minkowski space R?! is a cylinder S' x R, hence it can be described
by a smooth map

f:R'x 81 - RY,
or equivalently by four functions:

0 R x ST = R.
Take linear coordinate z° on R!. Let

{e\/j""/’1 :0< 2! < 2n}

be the set of all the points on S'. Endow the cylinder with a Riemannian metric
g = (dz®)? 4 (d2®)2. For simplicity of presentation, we will deal with only one
component of the map f, and denote it by ¢. The Lagrangian is given by:

1

Lip) =5 /RIXSI((&W)2 + (O419)?)dadz’.

A.2. Equation of motion and its solutions. By calculus of variation one can
obtain the equation of motion of the bosonic string as follows.
d

e L(p +ev)

e=0

/ ((Dgop + €0500) 4 (010 + €031 9))?)da’dac*
e=0 JRIxS?

4
d

1

2

= / (02000500 + g1 PO1 ¢)dx0dx1
Rl xSt

= —/]Rl Sl(@io@—i—@il@)i/)dxodxl.
X

Hence
ai()@ + 851@ =0.

By separation of variables, we get the following form of solutions:

o 2Y) = a+b2 - Z <anen<z°+ﬁz1> + ‘inenu"ﬁzl))
neZ—{0} " "
= a+alnz+aglnz— Z (aﬂ,z_"—i—ani_"),
ne€Z—{0} " "
where

z =20 +v—1zt, z=2"—v—1z'.
A field is said to be chiral if it is holomorphic. So the chiral part of ¢ is

— _ n _—n
o(z) =a+aplnz Z —z
neZ—{0}
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In particular,

= E anz "t

nez

A.3. Energy-momentum tensor. This is defined in this case by

y oL
4 TV = = . 0,0 —04L,

where

£ = 2000 + (0:10)?)

is the Lagrangian density. It is easy to see that
1
T = =T = S ((0:09)* = (0m19)?),
TO1 = Tlo = azogoaxl ®.

In particular,

T +T'" = 0.
Proposition A.1. For ¢ satisfying the equation of motion, we have
DT = 0.
Proof. For j =0 we have
8, T
= 300 (D09)” — (01 9)?) + Ot (Dr00De )
= (9509)(Os0) = (0200519)(0519) + (901020 9) (D1 0) + (0p00) (9, )
0.
The case of j = 1 is similar.
Recall
0. = (00 —V"10,1), 0 = 3 (00 +V10,1),
dz = dz° + v/ —1dz?', dz = dz°® — v/ —1dz'.
Write

T =THdxlda? = T**dzdz + T?dzdz + T?*dzdz + T?*dzdz..

By straightforward calculations, one finds

T2 E(Too _7i g \/TT(H \/171T10) = (9.0,
T2 _ E(Too L \/171T01 + %Tlo) 0,
T _ E(Too L \/171T01 \/171T10) 0,
T _ E(Too _ il _ \/171T01 \/171T10) (9:¢)2.

When the field ¢ is chiral, the nonvanishing component of T is
T% = (9:9)*.

35
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A.4. Quantization and the bosonic Fock space. Upon quantization, coeffi-
cients a and a,, becomes operators on a Hilbert space. For simplicity, we first take
a and ag to be the zero operators. For n < 0, a,, is a creator; for n > 0, a,, is an
annihilator. The Hilbert space B in concern contains a vacuum vector |0), i.e.,

an|0) =0
for n > 0, and B has an orthogonal basis of the form
{@—n, "+ a—n,|0) i n1,...,nK > 0,k > 0}.
Furthermore,
(35) [@m,y Gn] = MOy —n

on B.
One can also consider another similar space B on which {a, : n > 0} are
annihilators, and {a, a, : n < 0} are creators, and

[ap,a] = 1.

A5, Vacuum expectation values and Wick Theorem. For an operator A on
B or B, define the vacuum expectation value (vev) of A by

(4) = (0]4]0).

Theorem A.1. (Wick Theorem, Version I) Let k1,...,km,l1,... 1, be positive
integers, then

<ak1 ...akma_ll ...a_ln> = O

unless m = n, and

n n
(aky - akag, -a) = Y [Jlawa i) = D [ *ibki, -

0€S, i=1 oS, i=1
Proof. Easy consequence of (35). O
For a partition p of length [, let
Ap = Qu, Gy, Ay =Gy - Ay

Then we have:
Corollary A.1. For two partitions p and v we have:
(apa—y) = 2,0,
A.6. n-point functions. The vev
(p(z1) -~ 0(zn))
is called the n-point function.
Proposition A.2. On the Fock space E, we have
(36) (p(2)) =0,
(37) (p(2)p(w)) =Inz —w) =Inz = > (£)",

n>0
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Proof. The first identity is trivial. The second identity is proved as follows.

(p(2)e(w))
= < a+aglnz— Z a—nzfn a+aglnw — Z a—mzfm >
n
nez—{0} meZ—{0}
1 w
= 1 _ — L, _
nz Z z7"w" =Inz+In(1 z)
n>0
= In(z —w).
O
We will mostly be concerned with the vevs on B. Let
ﬁ(z) = 3z<P(Z) = Zanz_n_l-
nez
Proposition A.3. On the Fock space B, we have
(38) (8(2)) =0,
1
=2 n—1 __
(39) (B(2)B(w)) = = ;n(w/z) = m
Proof. The first identity is trivial. The second identity is proved as follows.
(B(z)B(w)) = <<Z anz_"_1> (Z amz_"’_1> >
nez meZ
= Z nz "l = 272 Z n(w/z)"*
n>0 n>1
_ 1
C (mw)?
O

A.7. Operator product expansions. We begin with an example. Clearly §(z)5(w)
and : 8(2)5(w) : are different. We now consider their difference:

B(z)B(w)=: f(z)B(w) :

= E anz " E amw*mflfzg anz "L E Apw ™ ™1

nez meEZ nez mez
=1 n—1 _ 1
D e
Hence
1
B(z)B(w) = ) +: B(2)p(w) : .

Note when z — w, the first term is singular, while the second term is regular in the
sense that it has the limit : S(w)B(w) :. We often rewrite it as

(40) B(2)B(w) = ——=+: B(2)B(w) : .
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An expression of this form is often called an operator product expansion (OPE). See
[5] for a nice mathematical treatment of the OPEs, in particular, the proof of the
following important result.

Theorem A.2. (Wick Theorem for OPEs) Let {a'(2),...,a"(z),
be a collection of fields such that the singular parts [a‘b?] of a*(2)b’
of the identity operators. Then we have the following OPE:

cat(z) - aM(2) s b (w) DN (w)

l()l(z), LN ()

w) are multiples

Then one has:
cat(z) - aM(2) bt (w) - Y (w) :
min(M,N)
= Z [ 1] - [at =] s at(2) - a™ (2)bY (w) - - b (w) inseen sisiye o)
s=0
where the subscript (i1, ,is;j1, " ,js) means that the fields a® (z),--- ,a% (),
bt (w), -, b= (w) are removed.

The n-point function can be computed by the Wick Theorem. Recall the energy
moment field is

T(2) = 5 B)BE) = 5 pdep(2) -

We are also interested in

B(2) = ~

1
- . 3._ 1. 3.
= 50 = s (Gap(2)?
Using the Wick Theorem, it is straightforward to get the following:
Proposition A.4. We have

(a) T(w) ~ 4 2,
(42) T(T(w) ~ 2T o Z
(43) (=) 3(w) ~ (ZT_(“:U))Q + a;“f(zj).
Proof. One has
T2B0) = g AP s flu) ~ Py Py Dull)
The other two OPEs can be obtained in the same fashion. O

A.8. Vertex operator. The vertex operators

V(z) =: e?®) ;= exp <Z a_nnz"> exp (Z —?z")

n>0 n>0
and

V(z) = exp (Z a_nnz"> €%z exp (Z —?z")

n>0 n>0
are introduced by string theorists (cf. e.g. [3]).
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