Mat 5320	Exam 1	Name:
Autumn '05	Due: Thursday, Oct 27, at 5:00 pm.	STUDENT ID #:

You must work alone. You may use the text, other books, your notes, etc. and your instructor; you may not consult another person in any way. Answer all questions completely.

§I. TRUE and/or FALSE. There are 5 questions at 2 points each. Circle your answer.

1. TRUE or FALSE.	The set of all complex-valued polynomials on the interval $[-1, +1]$ is a subspace of $C_{\mathbb{C}}[-1, +1]$, the space of continuous complex-valued functions on $[-1, +1]$.
2. TRUE or FALSE.	Let $n \in \mathbb{Z}^+$. Every <i>n</i> -dimensional vector space has a basis containing the zero vector 0.
3. TRUE or FALSE.	If $A = \{x_1, x_2, \dots, x_n\} \subset X$ is linearly independent and $x \notin \mathcal{V}(A)$, then it follows that the set $A_x = \{x, x_1, x_2, \dots, x_n\}$ is linearly independent.
4. TRUE or FALSE.	Let X be a finite dimensional vector space. Let \mathcal{I} be the collection of linearly independent subsets of X; let S be the collection of spanning subsets of X. Then $\mathcal{I} \cap S \neq \emptyset$.
5. True or False.	The set of linear transformations $L(X, X)$ is a subspace of the space of linear functionals X^{f} .

§II. PROBLEMS. There are 6 problems at 20 points each.

- 1. Set $Y = \{[1, 0, 1, 0], [1, 1, 1, 0], [3, 2, 1, 0], [1, 2, 3, 0]\} \subset \mathbb{R}^4$.
 - (a) Demonstrate that Y is linearly dependent.
 - (b) Prove that $\mathcal{V}(Y) \cong \mathbb{R}^3$.
- 2. Determine which of the following are linear transformations.
 - (a) The mapping $R : \mathbb{R}^4 \to \mathbb{R}^2$ given by $R([x_1, x_2, x_3, x_4]) = [x_1 + x_2, x_3 + x_4].$
 - (b) The mapping $S : \mathbb{R}^3 \to \mathbb{R}^3$ given by $S([x_1, x_2, x_3]) = [x_2, x_3, x_1]$.
 - (c) The mapping $T : \mathbb{R}^2 \to \mathbb{R}^1$ given by $T([x, y]) = x \tan(y)$.
- 3. Suppose that the linear transformation $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ is given by $\phi([x, y, z]) = [2x, x z, 2z]$.
 - (a) Find $\phi([1,0,0]), \phi([0,1,0])$, and $\phi([0,0,1])$.
 - (b) Find the range space $\Re(\phi)$ and the rank $\rho(\phi)$.
 - (c) Find the null space $\mathfrak{N}(\phi)$ and the nullity $\nu(\phi)$.
 - (d) Determine $\Re(\phi) \cap \Re(\phi)$.
- 4. Prove:

Theorem. Let F be a field and $n \in \mathbb{Z}^+$. Then F^n is a vector space.

5. Prove:

Theorem. Let $T \in L(X, Y)$. Then T is injective if and only if $\mathfrak{N}(T) = \{0\}$.

6. Prove:

Theorem. Let X be a vector space with a subspace X_i for each $i \in \mathcal{I}$ for some index set \mathcal{I} . Then the intersection $\mathcal{X} = \bigcap_{i \in \mathcal{I}} X_i$ is a subspace of X.

EC: Give the author, the play, the act, and the scene for the audio clip on the web site.