You must work alone. You may use the text, other books, your notes, etc. and your instructor; you may not consult another person in any way. Answer all questions completely.
§I. True and/or False. There are 5 questions at 2 points each. Circle your answer.

1. True or False. The set of all complex-valued polynomials on the interval $[-1,+1]$ is a subspace of $\mathcal{C}_{\mathbb{C}}[-1,+1]$, the space of continuous complex-valued functions on $[-1,+1]$.
2. True or False. Let $n \in \mathbb{Z}^{+}$. Every n-dimensional vector space has a basis containing the zero vector 0 .
3. True or False. If $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset X$ is linearly independent and $x \notin \mathcal{V}(A)$, then it follows that the set $A_{x}=\left\{x, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is linearly independent.
4. True or False. Let X be a finite dimensional vector space. Let \mathcal{I} be the collection of linearly independent subsets of X; let \mathcal{S} be the collection of spanning subsets of X. Then $\mathcal{I} \cap \mathcal{S} \neq \emptyset$.
5. True or False. The set of linear transformations $L(X, X)$ is a subspace of the space of linear functionals X^{f}.
§II. Problems. There are 6 problems at 20 points each.
6. Set $Y=\{[1,0,1,0],[1,1,1,0],[3,2,1,0],[1,2,3,0]\} \subset \mathbb{R}^{4}$.
(a) Demonstrate that Y is linearly dependent.
(b) Prove that $\mathcal{V}(Y) \cong \mathbb{R}^{3}$.
7. Determine which of the following are linear transformations.
(a) The mapping $R: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ given by $R\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)=\left[x_{1}+x_{2}, x_{3}+x_{4}\right]$.
(b) The mapping $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $S\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[x_{2}, x_{3}, x_{1}\right]$.
(c) The mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ given by $T([x, y])=x \tan (y)$.
8. Suppose that the linear transformation $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by $\phi([x, y, z])=[2 x, x-z, 2 z]$.
(a) Find $\phi([1,0,0]), \phi([0,1,0])$, and $\phi([0,0,1])$.
(b) Find the range space $\mathfrak{R}(\phi)$ and the rank $\rho(\phi)$.
(c) Find the null space $\mathfrak{N}(\phi)$ and the nullity $\nu(\phi)$.
(d) Determine $\mathfrak{R}(\phi) \cap \mathfrak{N}(\phi)$.
9. Prove:

Theorem. Let F be a field and $n \in \mathbb{Z}^{+}$. Then F^{n} is a vector space.
5. Prove:

Theorem. Let $T \in L(X, Y)$. Then T is injective if and only if $\mathfrak{N}(T)=\{0\}$.
6. Prove:

Theorem. Let X be a vector space with a subspace X_{i} for each $i \in \mathcal{I}$ for some index set \mathcal{I}. Then the intersection $\mathcal{X}=\bigcap_{i \in \mathcal{I}} X_{i}$ is a subspace of X.

EC: Give the author, the play, the act, and the scene for the audio clip on the web site.

