| MAT 5320 | Final Exam | NAME: |
| :--- | :---: | ---: |
| AUTUMN '05 | Due: Friday, Dec 2, at 12:00 pm. | STUDENT ID \#: |

You must work alone. You may use the text, other books, your notes, etc. and your instructor; you may not consult another person in any way. Answer all questions completely.
§I. True and/or False. There are 2 questions at 2 points each. Circle your answer.

1. TRUE or FALSE. For any finite $n \in \mathbb{Z}^{+}$, there is only one real vector space of dimension $n$.
2. TRUE or FALSE. Each $m \times n$ matrix with elements in $\mathbb{Z}_{5}$ defines a unique linear transformation.
§II. Problems. There are 4 problems at 20 points each.
3. Let $A \in L\left(\mathbb{R}^{4}, \mathbb{R}^{4}\right)$ be given by $A=\left[\begin{array}{cccc}0 & -1 & 0 & 2 \\ -1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1\end{array}\right]$. Find
(a) $p(\lambda)$
(b) $m(\lambda)$
(c) the eigenvalues and their algebraic \& geometric multiplicities
(d) the transition matrix $P$
(e) $J C F(A)$
4. Determine all possible Jordan Canonical Forms for a $5 \times 5$ matrix $A$
(a) whose characteristic polynomial is $p(\lambda)=(2-\lambda)^{3}(5-\lambda)^{2}$.
(b) whose minimal polynomial is $m(\lambda)=(4-\lambda)^{2}$.
5. Prove:

Theorem. Define the $k \times k$ matrix

$$
N_{k}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & & \ldots & 0 & 1 \\
0 & & \ldots & 0 & 0
\end{array}\right]
$$

Then $N_{k}$ is nilpotent of index $k$.
4. Prove:

Theorem. Let $A \in \mathfrak{M}_{n \times n}$. $A$ is nonsingular iff the characteristic polynomial has nonzero constant term; i.e., $p(0) \neq 0$.

EC: Who said: "You can observe a lot just by watchin'."

