Test 1 Minimal List of Essential Knowledge

Important Definitions

- Field
- Vector Space
- Isomorphism
- Subspace
- Direct Sum
- Linear Combination
- Span
- Linear Dependence/Independence
- Basis
- Dimension
- Linear Transformation
- Null Space
- Range Space
- Nullity
- Rank
- Injective, Surjective, Bijective
- Singular, Nonsingular
- Linear Functional

Important Theorems (paraphrased)

- For every prime p and n ∈ Z, there exists a unique field with pⁿ elements.
- The intersection of subspaces is a subspace.
- The span of a set is a subspace.
- The maximum size of a linearly independent set equals the dimension of the space.

- Every basis of a finite dimensional space X contains dim(X) vectors.
- For $T \in L(X, Y)$, we have

 $\dim(\mathfrak{R}(T)) + \dim(\mathfrak{N}(T)) = \dim(X);$

 $\rho+\nu=n$

- For $T \in L(X, Y)$, we have T^{-1} exists iff $\mathfrak{N}(T) = \{0\}$ iff $\rho(T) = \dim(X)$.
- L(X, X) is an associative algebra.
- Every finite dimensional vector space X over F is isomorphic to $F^{\dim(X)}$.
- X^f is a vector space (called the conjugate space of X).

Theorems (paraphrased) for Proving

- \mathbb{R}^n (or \mathbb{C}^n) is a vector space.
- C[a, b] is a vector space.
- A subspace of a vector space is a vector space.
- The intersection of a collection of subspaces is a subspace.
- If *Y* is linearly independent, then *Y* is a basis for *V*(*Y*), the span of *Y*.
- If {e_i} is a basis and x ∈ X, then there are unique scalars α_i such that x = ∑_n α_ie_i.
- Let X be a finite dimensional vector space. Then X ≅ F^{dim(X)}.
- Let $T \in L(X, Y)$, then T is injective iff $\mathfrak{N}(T) = \{0\}.$
- $\int_0^1 f(t) dt$ is a linear functional on $\mathcal{C}[0, 1]$.
- X^f is a vector space.

Plus something you've never seen.