\qquad

Problems

1. Calculate the limit $\lim _{x \rightarrow \infty} \sqrt{x^{4}+4 x^{2}+1}-x^{2}$.
2. If $x^{2}+y^{2}=1$, then show that $y^{\prime \prime}=-1 / y^{3}$.
3. Determine the Maclaurin polynomial of the third degree, $T_{3}(x)$, for $f(x)=\tan (x)$.
4. Let $\chi(x)$ be the characteristic function of the rationals; i.e., $\chi(x)=\left\{\begin{array}{cc}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{array}\right\}$.

Explain why χ is nowhere differentiable.
5. Derivatives possess the Intermediate Value Property; that is,

Theorem 1 If f is differentiable on $[a, b]$ and m is any value between $f^{\prime}\left(x_{1}\right) \& f^{\prime}\left(x_{2}\right)$ for $\left[x_{1}, x_{2}\right] \subseteq[a, b]$, then there exists a point $c \in\left(x_{1}, x_{2}\right)$ for which $f^{\prime}(c)=m$.

Show $f(x)=|x|$ does not have the $I V P$. Explain why this does not contradict the theorem.

Proofs

6. Theorem 2 (Chain Rule) Let $S, T \subseteq \mathbb{R}$ be open intervals with $f: S \rightarrow T$ and $g: T \rightarrow \mathbb{R}$. Suppose that f is differentiable at $x=a \in S$ and g is differentiable at $t=f(a) \in T$. Then $g \circ f$ is differentiable at $x=a$ and

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

7. Theorem 3 (Rolle's Theorem) Suppose that
(a) f is continuous on the closed interval $[a, b]$,
(b) f is differentiable on the open interval (a, b), and
(c) $f(a)=f(b)$.

Then there exists at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$.
8. Definition 1 A function $f: D \rightarrow \mathbb{R}$ is Lipschitz α, written $f \in \operatorname{Lip}_{\alpha}(D)$, if and only if there exists a constant $K \in \mathbb{R}$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq K\left|x_{1}-x_{2}\right|^{\alpha}
$$

for all $x_{1}, x_{2} \in D$.
Theorem 4 Let f be a function defined on $I=[a, b]$ and let $\alpha>1$. Then $f \in \operatorname{Lip} p_{\alpha}(I)$ if and only if f is a constant function.

