Problems

- 1. Calculate the limit $\lim_{x \to \infty} \sqrt{x^4 + 4x^2 + 1} x^2$.
- 2. If $x^2 + y^2 = 1$, then show that $y'' = -1/y^3$.
- 3. Determine the Maclaurin polynomial of the third degree, $T_3(x)$, for $f(x) = \tan(x)$.
- 4. Let $\chi(x)$ be the *characteristic function* of the rationals; i.e., $\chi(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Explain why χ is nowhere differentiable.
- 5. Derivatives possess the Intermediate Value Property; that is,

Theorem 1 If f is differentiable on [a, b] and m is any value between $f'(x_1) \& f'(x_2)$ for $[x_1, x_2] \subseteq [a, b]$, then there exists a point $c \in (x_1, x_2)$ for which f'(c) = m.

Show f(x) = |x| does not have the *IVP*. Explain why this does not contradict the theorem.

Proofs

6. Theorem 2 (Chain Rule) Let $S, T \subseteq \mathbb{R}$ be open intervals with $f : S \to T$ and $g : T \to \mathbb{R}$. Suppose that f is differentiable at $x = a \in S$ and g is differentiable at $t = f(a) \in T$. Then $g \circ f$ is differentiable at x = a and

$$(g \circ f)'(a) = g'(f(a)) f'(a)$$

- 7. Theorem 3 (Rolle's Theorem) Suppose that
 - (a) f is continuous on the closed interval [a, b],
 - (b) f is differentiable on the open interval (a, b), and
 - (c) f(a) = f(b).

Then there exists at least one point $c \in (a, b)$ such that f'(c) = 0.

8. **Definition 1** A function $f : D \to \mathbb{R}$ is Lipschitz α , written $f \in Lip_{\alpha}(D)$, if and only if there exists a constant $K \in \mathbb{R}$ such that

$$|f(x_1) - f(x_2)| \le K |x_1 - x_2|^{\alpha}$$

for all $x_1, x_2 \in D$.

Theorem 4 Let f be a function defined on I = [a, b] and let $\alpha > 1$. Then $f \in Lip_{\alpha}(I)$ if and only if f is a constant function.