MAT 5610	Su '03	Name:
Exam 2		Student ID #:

Problems

1. Calculate the integral:
$$\int_0^1 \frac{e^{\sqrt{x}}}{2} dx$$
.

- 2. Find the derivative, F'(x), when $F(x) = \int_{-x}^{+x} e^{-t^2} dt$.
- 3. Evaluate the limit: $\lim_{n \to \infty} n \sum_{k=0}^{\infty} \frac{2^2}{n^2 + k^2}$.
- 4. Let $\chi(x)$ be the characteristic function of the rationals; i.e., $\chi(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Explain why χ is not integrable on [0, 1].
- 5. Show that $\Gamma(x+1) = x \Gamma(x)$ for x > 0.

Proofs

1. **Theorem 1** Let $f : [a,b] \to \mathbb{R}$ be bounded. Then f is Riemann integrable on [a,b] if and only if for any $\epsilon > 0$ there is a partition P of [a,b] such that

$$U(P, f) - L(P, f) < \epsilon.$$

2. Theorem 2 (The Fundamental Theorem of Calculus) Let f be an integrable, real-valued function on [a, b] and let F be an antiderivative of f. Then

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

3. Definition 1 We call $f : [a, b] \to \mathbb{R}$ a step function if there exists a partition, P, of [a, b] so that f is contant on each interval of P.

Theorem 3 Let f be a step function of [a, b]. Then f is Riemann integrable on [a, b] and

$$\int_{a}^{b} f(\omega) \, d\omega = \sum_{k=1}^{n} f(x_k - 0) \Delta x_k$$

where $f(x_k - 0) = \lim_{x \to x_k^-} f(x)$.