
MAT 5620: 1

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Vector Calculus

Vector Space Axioms
A set V = {~v} with addition + and scalar multiplication · with scalars
from a field F is a vector space over F when

1. 〈V,+〉 is an Abelian group.
2. • scalar multiplication distributes over vector addition

• scalar addition distributes over scalar multiplication
• multiplication of scalars ‘associates’ with scalar multiplication

Recall:
• The norm (magnitude) of a vector ~u is ‖~u‖ =

√∑
u2
i

• The direction vector of ~u is (1/‖u‖) · ~u

Definition (Dot Product in Rn over R)
Dot Product ~u · ~v =

∑
ui · vi = ‖~u‖ ‖~v‖ cos(∠uv)
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Dot Product

Proposition (Dot Product Properties)
Let ~u and ~v be in Rn. Then

1. ∠uv = cos−1

[
~u · ~v
‖~u‖ ‖~v‖

]
angle between vectors

2. |~u · ~v| ≤ ‖~u‖ ‖~v‖ Cauchy-Bunyakovsky-Schwarz inequality

3. ‖~u+~v‖ ≤ ‖~u‖+ ‖~v‖ Triangle inequality; (cf. Minkowski’s inequality)

4. proj~v(~u) =
~u · ~v
~v · ~v ~v (orthogonal) projection of ~u onto ~v
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Cross Product

Definition
• Let ~u and ~v ∈ R3; set e1, e2, e3 to be std basis vectors. Then

~u× ~v =

∣∣∣∣∣∣
e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
• Let ~u1 to ~un−1 ∈ Rn, n ≥ 3; let {en} = {std basis vectors}. Then

×( ~u1, . . . , ~un−1) =

∣∣∣∣∣∣∣∣∣
e1 e2 . . . en
u1,1 u1,2 . . . u1,n

...
...

. . .
...

un−1,1 un−1,2 . . . un−1,n

∣∣∣∣∣∣∣∣∣
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Cross Product Properties

Proposition (Cross Product Properties in R3)
Let ~u, ~v, and ~w be in R3. Then

1. ∠uv = sin−1

[‖~u× ~v‖
‖~u‖ ‖~v‖

]
angle between vectors

2. ‖~u× ~v‖ ≤ ‖~u‖ ‖~v‖

3. ~u× ~v = −~v × ~u area of [~u,~v] = ‖~u× ~v‖

4. ~u · (~v × ~w) = (~u× ~v) · ~w = ~v · (~w × ~u)

5. ~u · (~v × ~w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣; volume of [~u,~v, ~w] = |~u · (~v × ~w)|
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Parametric Equations

Definition (Parametrization)
Suppose f :D → R, g :D → R, and h :D → R. Then

γ(t) = (f(t), g(t), h(t))

for t ∈ D is a curve (spacecurve) in R3. The fcns f , g, and h are
parametric equations for γ, or a parametrization of γ.

Examples
1. The line segment L from ~u to ~w can be parametrized as

L(t) = ~u+ (~w − ~u) · t, t ∈ [0, 1]

2. Γ given by f:=t->〈cos(t),sin(t)*cos(t),t*(1-t)〉 for
t ∈ [0, 3π].
animate(spacecurve,[f(t),t=0..3*Pi*k,

thickness=2],k=0..1,axes=frame,color=black,frames=30)
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Continuous Spacecurves

Definition
Let I = [a, b] ⊆ R. A curve γ is
• continuous (on I) if γ can be parametrized with components that

are continuous on I.
• smooth (on I) if γ’s parametric components are continuously

differentiable on I, and f ′2 + g′2 + h′2 > 0 for all t ∈ (a, b).
• piecewise smooth (on I) if [a, b] can be partitioned into a finite

number of subintervals on which γ is smooth.

Note: Smooth ≡ a particle moving parametrically along the curve
doesn’t change direction abruptly, stop mid-curve, or reverse.

Theorem
If γ(t) = (f(t), g(t)) is smooth on [a, b], then tangent slope at

P0 = (x, y) is given by
dy

dx
=
dy

dt
/ dx
dt

when
dx

dt
6= 0.
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A Smooth Closed Curve

Γ(t) = (sin(2t), sin(t), cos(t)) for t ∈ [0, 2π]

Γ(0) = Γ(2π)
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Lines in R3

Theorem (The Line Forms Here Thm)
A line ` passing through P0 = (x0, y0, z0), parallel to ~u = (a, b, c) 6= ~0
has

vector form: `(t) = P0 + t ~u, t ∈ R

parametric form: `(t) = (x0 + at, y0 + bt, z0 + ct), t ∈ R

symmetric form:
x(t)− x0

a
=
y(t)− y0

b
=
z(t)− z0

c

Consider. . .
Let P0 = (1, 2, 4) and direction ~u = (1, 2,−1).

1. `1(t) = (1 + t, 2 + 2t, 4− t) ~u = (1, 2,−1)

2. `2(s) =
(

1 + 1√
6
s, 2 + 2√

6
s, 4− 1√

6
s
)

~w = 1√
6
(1, 2,−1)
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Planes in R3

Theorem (The Plane, the Plane)
A plane P passing through P0 = (x0, y0, z0), normal to
~u = (a, b, c) 6= ~0 is P = { ~X} s.t.

vector form: ~u ·
(
~X − P0

)
= 0

parametric form: a(x− x0) + b(y − y0) + c(z − z0) = 0

A plane P passing through P0 = (x0, y0, z0), containing two vectors
~u and ~w is P = { ~X} s.t.

cross product form: (~u× ~w) ·
(
~X − P0

)
= 0

Problem
1. Find a plane containing the three points (1, 1, 0), (1, 0, 1), (0, 1, 1).
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Quadric Surfaces

Standard Forms of Quadric Surfaces

sphere: x2 + y2 + z2 = r2

ellipsoid:
x2

a2
+
y2

b2
+
z2

c2
= 1

elliptic paraboloid:
x2

a2
+
y2

b2
− z = 0

hyperbolic paraboloid:
x2

a2
− y2

b2
+ z = 0

elliptic cone:
x2

a2
+
y2

b2
− z2 = 0

hyperboloid of 1 sheet:
x2

a2
+
y2

b2
− z2

c2
= +1

hyperboloid of 2 sheets:
x2

a2
+
y2

b2
− z2

c2
= −1
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Quadric Surfaces Reformed

Almost Standard Forms of Quadric Surfaces

sphere: ρx2 + ρy2 + ρz2 = 1

ellipsoid: αx2 + βy2 + γz2 = 1

elliptic paraboloid: αx2 + βy2 − z = 0

hyperbolic paraboloid: αx2 − βy2 + z = 0

elliptic cone: αx2 + βy2 − z2 = 0

hyperboloid of 1 sheet: αx2 + βy2 − γz2 = +1

hyperboloid of 2 sheets: αx2 + βy2 − γz2 = −1
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Vector-Valued Functions

Notation
The standard basis vectors in R3 are

〈1, 0, 0〉 = e1 = i, 〈0, 1, 0〉 = e2 = j, 〈0, 0, 1〉 = e3 = k

If f , g, h :D → R are real functions, then ~r :D → R3 given by

~r(t) = 〈f(t), g(t), h(t)〉 = f(t)i + g(t)j + h(t)k

is a vector-valued function with components f , g, and h.

Definition
Let ~r :D → R3 have components f , g, and h, and let t0 be an
accumulation point of D. Then

lim
t→t0

~r(t) = ~L = Lf i + Lgj + Lhk

iff (∀ε>0) (∃δ>0) s.t. (∀t∈D) if 0 < |t− t0| < δ, then ‖~r(t)− ~L‖ < ε.

http://mathworld.wolfram.com/LimitPoint.html
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Vector-Valued Function Limits

Theorem (Limits Work)

lim
t→t0

~r(t) = Lf i + Lgj + Lhk

⇐⇒
lim
t→t0

f(t) = Lf ∧ lim
t→t0

g(t) = Lg ∧ lim
t→t0

h(t) = Lh

Proof (key inequality).
E

|a| ≤
(⇐)

√
a2 + b2 + c2 = ‖(a, b, c)‖ ≤

(⇒)
|a|+ |b|+ |c|
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Algebra of Vector-Valued Function Limits

Theorem (Algebra of Vector-Valued Limits)
Suppose ~u, ~w :D → Rn, k :D → R, c ∈ R, and t0 ∈ D′. Then

lim
t→t0

[~u± ~w ] =

[
lim
t→t0

~u

]
±
[

lim
t→t0

~w

]
(1)

lim
t→t0

[c~u ] = c

[
lim
t→t0

~u

]
(2)

lim
t→t0

[k~u ] =

[
lim
t→t0

k

] [
lim
t→t0

~u

]
(3)

lim
t→t0

[~u · ~w ] =

[
lim
t→t0

~u

]
·
[

lim
t→t0

~w

]
(4)

lim
t→t0

[~u× ~w ] =

[
lim
t→t0

~u

]
×
[

lim
t→t0

~w

]
(5)
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Continuity of Vector-Valued Functions

Definition (Continuity)
A function ~r(t) is continuous at t0 ∈ D iff (∀ε>0) (∃δ>0) s.t. (∀t∈D)
if |t− t0| < δ, then ‖~r(t)− ~r(t0)‖ < ε.

Proposition
1. A function ~r(t) is continuous at an accumulation point t0 ∈ D iff

lim
t→t0

~r(t) = ~r(t0)

2. A function ~r(t) is uniformly continuous on E ⊆ D iff (∀ε>0)
(∃δ>0) s.t. (∀t1, t2∈E) if |t1 − t2| < δ, then ‖~r(t1)− ~r(t2)‖ < ε.

3. If a function ~r(t) is continuous on a closed and bounded set E,
then ~r is uniformly continuous on E.
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Differentiability of Vector-Valued Functions

Definition (Differentiable)
A function ~r(t) is differentiable at t0 ∈ D iff the limit

~r ′(t) = lim
t→t0

~r(t)− ~r(t0)

t− t0
= lim
t→t0

~r(t0 + h)− ~r(t0)

h

exists and is finite.

Proposition
If f , g, and h are the components of ~r, then ~r is differentiable iff f , g,
and h are differentiable, whence

~r ′(t) = f ′(t)i + g′(t)j + h′(t)k.

Example
1. Find ~r ′ for the line through P0 = (1, 2, 4) parallel to ~u = (1, 2,−1).
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Algebra of Vector-Valued Derivatives

Theorem (Algebra of Derivatives)
Suppose ~u, ~w :D → Rn & k :D → R are all differentiable, and c ∈ R.
Then

[~u± ~w ]
′

= [~u ′]± [~w ′] (6)

[c ~u ]
′

= c [~u ′] (7)

[k ~u ]
′

= [k′] ~u+ k [~u ′] (8)

[~u · ~w ]
′

= [~u ′] · ~w + ~u · [~w ′] (9)

[~u× ~w ]
′

= [~u ′]× ~w + ~u× [~w ′] (10)

‖~u‖′ =
~u · [~u ′]
‖~u‖ (11)

[~u ◦ k]
′

= [~u ′ ◦ k] ∗ k′ (12)
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Derivative Props

Properties
Suppose ~r(t) is a twice differentiable vector function.

1. ~V (t) = ~r ′(t) is
• the tangent vector of ~r
• the velocity vector of ~r

and S(t) = ‖~r ′(t)‖ gives the speed of ~r(t)

2. ~A(t) = ~V ′(t) = ~r ′′(t) is
• the acceleration vector of ~r

Example
Find the velocity & acceleration and the speed for the function

1. ~r(t) = 〈2 cos(t), 3 sin(t), z0〉.
2. ~ρ(t) = 〈cos(t) · (1 + cos(t)), 2 sin(t) · (1 + t), t〉.1

1spacecurve(f(t),t=0..6*Pi,numpoints=101,thickness=3,axes=normal)
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Example 9.6.9

Example (9.6.9, pg 410)
Consider ~u,~v, ~w : R→ R2 defined by

~u = 〈t, t2〉, ~v = 〈t3, t6〉, and ~w =

{
〈t, t2〉 if t ≤ 0

〈t3, t6〉 if t > 0

All 3 functions are continuous, all trace the parabola y = x2, and all
are ~0 at t = 0.

1. ~u is differentiable at t = 0 with tangent vector ~u ′(0) = 〈1, 0〉 and
tangent line y = 0.

2. ~v is differentiable at t = 0 with tangent vector ~v ′(0) = 〈0, 0〉, but
has no tangent line ~0.

3. ~w is not differentiable at t = 0 and has no tangent line at ~0.

See Maple demo
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Circles

Proposition
Let ~r be a differentiable vector function of t. Then ‖~r(t)‖ is constant iff
~r(t) · ~r ′(t) = 0; i.e. ~r and ~r ′ are orthogonal.

Proof.
‖~r(t)‖ is constant ⇐⇒ ~r(t) · ~r(t) = c ⇐⇒ ~r(t) · ~r ′(t) = 0

Definition
Unit tangent vector: ~T (t) = ~r ′(t)

/
‖~r ′(t)‖

Unit normal vector: ~N(t) = ~T ′(t)
/
‖~T ′(t)‖

~V = ~r ′ and v = ‖~V ‖. Then ~A = ~V ′ = v ~T ′ + v′ ~T . Since ~T ′ ⊥ ~T , then
~A ~N = v ~T ′ and ~A~T = v′ ~T forms an orthogonal decomp of ~A

http://mathsci2.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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Þe Cræft

Project
Using

~r ′′ = ~A = v ~T ′ + v′ ~T (13)
~A = ~A ~N + ~A~T (14)

1. Compute ~A · ~T?

2. What vector is ( ~A · ~T ) ~T?

3. Compute ~A−
(
~A · ~T

)
~T?

4. Apply this idea to ~r(t) = 〈cos(t), sin(t)〉. What are ~A’s orthognal
components?

MAT 5620: 22

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Int

Definition∫ b

a

~r(t) dt =

[∫ b

a

f(t) dt

]
i +

[∫ b

a

g(t) dt

]
j +

[∫ b

a

h(t) dt

]
k

off the integrals exist. I.e.,
∫ b
a
〈fi〉(t) dt =

〈∫ b
a
fi(t)dt

〉
.

Theorem (FToC)
Suppose ~r(t) is integrable on [a, b] and ~R(t) is an antiderivative (or primitive)
for ~r. Then ∫ b

a

~r(t) dt = ~R(t)
∣∣∣b
a

= ~R(b)− ~R(a)

Theorem
Suppose ~r(t) is integrable on [a, b]. Then∥∥∥∥∫ b

a

~r(t) dt

∥∥∥∥ ≤ ∫ b

a

‖~r(t)‖ dt
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Arclength

Definition (Arclength)
Let γ(t) = ~r(t) be a smooth curve on [a, b]. The length of γ on [a, b] is

L(γ) = sup {LQ |Q partitions [a, b]}
where LQ =

∑
k

∥∥γ(tk)− γ(tk−1)
∥∥ for tk ∈ Q.

Proposition
Let γ(t) = ~r(t) be a smooth curve on [a, b]. The length of γ on [a, b] is
L(γ) = lim|Q|→0 LQ where |Q| is the norm of the partition.

Theorem (Useful Arclength Theorem)
Let γ(t) = ~r(t) be a smooth curve on [a, b]. The length of γ on [a, b] is

L(γ) =

∫ b

a

√∑
k
(f ′k)

2
dt =

∫ b

a

∥∥~r ′(t)∥∥ dt
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Proof

Proof (UAT).
I. Let Q be a partition. Fix k. Whereupon√∑

j
[fj(tk))−fj(tk−1)]2 = ‖~r(tk)− ~r(tk−1)‖ =

∥∥∥∥∥
∫ tk

tk−1

~r ′(t) dt

∥∥∥∥∥
Since

∥∥∥∥∫ ~r ′dt

∥∥∥∥ ≤ ∫ ∥∥~r ′∥∥ dt, then L(γ) ≤
∫ b

a

∥∥~r ′(t)∥∥ dt.
II. Let ε>0. Choose δ>0 s.t. ‖~r(s)− ~r(t)‖<ε for |s− t|<δ. Choose |Q|<δ.

1.
∫ tk+1

tk

∥∥~r ′(t)∥∥ dt ≤ ∫ tk+1

tk

∥∥~r ′(tk+1)
∥∥+ε dt =

∫ tk+1

tk

∥∥~r ′(tk+1)
∥∥ dt+ε∆tk

2. ≤
∥∥∥∥∫ tk+1

tk

~r ′(t)dt

∥∥∥∥+

∥∥∥∥∫ tk+1

tk

[
~r ′(tk+1)− ~r ′(t)

]
dt

∥∥∥∥+ ε∆tk

3. ≤ ‖~r(tk+1)− ~r(tk)‖+ 2ε∆tk =⇒
∫ b

a

∥∥~r ′(t)∥∥ dt ≤ LQ + 2ε(b− a)

Hence
∫ b

a

∥∥~r ′(t)∥∥ dt ≤ L(γ).
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Rectified

Definition (Recifiable Curve)
A curve γ is rectifiable iff L(γ) is finite.

Examples (Curves2)

I. Let γ(t) = 〈cos(πt), sin(πt),
√

3πt〉 on [0, 1].

1. L(γ) =

∫ 1

0

‖γ′(t)‖ dt

2. =

∫ 1

0

∥∥∥π〈− sin(πt), cos(πt),
√

3 〉
∥∥∥ dt = 2π

II. Let ψ(t)=〈tan(t), 1− sin(t), cos(t)〉 on [0, π/2].

1. L(ψ) =

∫ 1

0

‖ψ′(t)‖ dt

2. =

∫ 1

0

∥∥〈sec2(t),− cos(t),− sin(t)〉
∥∥ dt =∞

2 Maple worksheet
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Interlude

Theorem (Most Useful Norm-Integral Estimate)
Let ~r(t) be Riemann integrable on [a, b]. Then ‖~r(t)‖ is integrable and∥∥∥∥∫ b

a

~r(t) dt

∥∥∥∥ ≤ ∫ b

a

‖~r(t)‖ dt

Proof.
I. ‖~r(t)‖ is integrable: D

II. (R2).
∥∥∥∥∫ b

a

~r(t) dt

∥∥∥∥ =

√(∫ b

a

f

)2

+

(∫ b

a

g

)2

≤

√∫ b

a

(f2) +

∫ b

a

(g2) =

√∫ b

a

(f2 + g2)

≤
∫ b

a

√
f2 + g2 =

∫ b

a

‖~r(t)‖ dt.

http://www.mathsci.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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Reparametrize

Definition
Two parametrizations γ1 on [a, b] and γ2 on [c, d] of a curve are
equivalent iff there is a continuously differentiable bijection
u : [c, d]→ [a, b] such that u(c) = a, u(d) = b, and γ2 = γ1 ◦ u.

Theorem
Suppose γ1 and γ2 are equivalent smooth parametrizations of a
curve. Then L(γ1) = L(γ2).

Proof.
Let u be the equivalence bijection for γ1 and γ2. Then

L(γ2) =

∫ d

c

‖γ′2(t)‖dt =

∫ d

c

‖γ′1(u(t)) · u′(t)‖dt

=

∫ d

c

‖γ′1(u(t))‖ · u′(t) dt =

∫ b

a

‖γ1(s)‖ds = L(γ1)
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Parametrization by Arclength

Definition (Arclength Parameter)

Set `(t) =
∫ t
a
‖~r ′(t)‖dt. Then ` is continuous, differentiable, a

bijection, and increasing⇒ it has an inverse `−1 : [0, L(γ)]→ [a, b].
So γ ◦ `−1 : [0, L(γ)]→ Rn is the arclength parametrization of γ.

Example
Let ~r(t) = 〈cos(t), sin(t), t/3〉 on [−4π, 4π].

1. Whence ‖~r ′(t)‖ = ‖〈− sin(t), cos(t), 1/3〉‖ =
√

10/3.

2. Hence `(t) =
∫ t
−4π

√
10/3 dt =

√
10/3 · (t+ 4π).

3. Fortuitously, ` is algebraically invertible (usually not true!) and
`−1(s) = (3/

√
10)s− 4π.

4. Whereupon the arc length parametrized form of γ is

γ(s) =
〈

cos
(

3√
10
s
)
, sin

(
3√
10
s
)
, 1√

10
s− 4

3 π
〉

on
[
0, 8
√

10
3 π

]
Maple

http://www.mathsci.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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What’s the Problem?

Example (2→
√
2 )

−→
n→∞

L(γn) = 2 L(γ∞) =
√

2

Maple
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Interlude: Inner Products

Definition (Inner Product)
Suppose that ~u, ~v, and ~w are vectors in a vector space V over the
field F , and that c ∈ F is a scalar. An inner product is a function
〈·, ·〉 :V × V → F such that

1. 〈~u, ~w 〉 = 〈~w, ~u 〉 commutivity

2. 〈~u+ ~v, ~w 〉 = 〈~u, ~w 〉+ 〈~v, ~w 〉 additivity

3. 〈c ~u,~v 〉 = c 〈~u,~v 〉 scalar homogeneity

}
bi-linearity

4. 〈~u, ~u 〉 ≥ 0
}

positive definite
5. 〈~u, ~u 〉 = 0 iff ~u = ~0

Examples
1. The usual dot product on R3.

2. For p(x) =
n∑
ajx

j , q(x) =
n∑
bjx

j ∈ Pn, set 〈p, q〉 =
n∑
aibi.

http://www.mathsci.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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Interlude: Orthogonality

Proposition
Suppose that f(x), g(x) : [a, b]→ R are (piecewise) continuous
functions. Then

〈f, g〉 =

∫ b

a

f(x)g(x) dx

is an inner product on the vector space of (piecewise) continuous
functions on [a, b]

Definition (Orthogonal Vectors)
Suppose that ~u and ~w are vectors in a vector space V over the field
F . Then ~u is orthogonal to ~w iff 〈~u, ~w 〉 = 0.

Example (Orthogonal Functions)

1. 〈sin, cos〉 =

∫ π

−π
sin(θ) cos(θ) dθ = 0 =⇒ sine ⊥ cosine on [−π, π]
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Interlude: Orthogonal Polynomials

Example (The Legendre Polynomials)
The Legendre polynomials are orthogonal on [−1, 1] wrt 〈f, g〉 =

∫ 1

−1
fg dx.

Two formulas for the Legendre polynomials Pn are

1. Rodrigues’ formula:
1

2nn!

dn

dxn

[(
x2 − 1

)n]
.

2. recurrence relation: (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

P0(x) = 1

P1(x) = x

P2(x) = 1
2

(
3x2 − 1

)
P3(x) = 1

2

(
5x3 − 3x

)
P4(x) = 1

8

(
35x4 − 30x2 + 3

)
P5(x) = 1

8

(
63x5 − 70x3 + 15x

)
P6(x) = 1

16

(
231x6 − 315x4 + 105x2 − 5

)
P7(x) = 1

16

(
428x7 − 693x5 + 315x3 − 35x

)

http://mathworld.wolfram.com/OrthogonalPolynomials.html
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Interlude: Legendre Polynomials’ Graphs

Maple
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Interlude: Expansions in Legendre Polynomials

Proposition (Orthonormalized Legendre Polynomials)

Let pn(x) =
√

2n+1
2 · Pn(x). Then 〈pn, pm〉 = δm,n.

Theorem
Let f be integrable on [−1, 1], and set an = 〈f, pn〉. Then

fn(x) =
n∑
k=0

an pn(x) −→
n

f(x)

Example
For f(x) = sin(πx) on [0, a], we have

a :=
[
0,
√

6
π , 0,

√
14
π3

(
π2 − 15

)
, 0,
√

22
π5

(
π4 − 105π2 + 945

)
, 0, . . .

]
sin3(x) =

√
6
π p1(x) +

√
14
π3

(
π2 − 15

)
p3(x) = − 15

2
π2−21
π3 x+ 35

2
π2−15
π3 x3

http://www.mathsci.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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Interlude: Legendre Expansion Graph

f(x) = sin(πx)

f3(x): Legendre expansion

T3(x): Taylor expansion

MAT 5620: 36

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Basic Topology of Rn

Definition (Total Recall:)
Open ball: B(~c; r) = {~x | ‖~x− ~c‖ < r} ⊆ Rn

Punct’d ball: B′(~c; r) = {~x | 0 < ‖~x− ~c‖ < r} ⊂ Rn; NB: ~c /∈B′(~c; r)

Interior point: ~a ∈ int(S) iff ∃ ε>0 such that B(~a; ε) ⊂ S

Open set: S is open iff S = int(S)

Accum point: ~a in an accumulation pt of S iff ∀ε>0 [B′(~a; ε) ∩ S] 6= ∅

Derived set: S′ = {all accumulation pts of S}

Closed set: S is closed iff S′⊆ S

Closure: The closure of S is S = S ∪ S′

Boundary pt: ~b is a boundary pt of S iff B(~b; ε) contains points both of S
and S complement for all ε>0

Boundary: ∂S = {all boundary pts of S}

Isolated pt: ~a in an isolated pt of S iff ∃ ε>0 [B′(~a; ε) ∩ S] = ∅

http://mathworld.wolfram.com/Topology.html
http://latin-phrases.co.uk/abbreviations/
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Proper Stichens

Proposition (Open Sets)
1. If I is an indexing set for a family of open sets {Oi}, then the set
O =

⋃
i∈I

Oi is open. (Arbitrary unions of open sets are open.)

2. If {Oi}ni=1 is a finite family of open sets, then O =
n⋂
i=1

Oi is open.

(Finite intersections of open sets are open.)

Examples
1. Let Ox = (−x, x) for x ∈ (0, 1) = I. Then⋃

i∈I

Oi = ?
⋂
i∈I

Oi = ?

2. Let Pi =
(
−1− 1

i
, 1− 1

i

)
for i = 1..n. Then

n⋂
i=1

Pi = ?
n⋃
i=1

Pi = ?
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Closed to Stichens

Proposition (Closed Sets)
1. If I is an indexing set for a family of closed sets {Fi}, then the set
F =

⋂
i∈I

Fi is closed. (Arbitrary intersections of closed sets are closed.)

2. If {Fi}ni=1 is a finite family of closed sets, then O =
n⋃
i=1

Fi is closed.

(Finite unions of closed sets are closed.)

Examples

1. Let Fk =
[
−1 + 1

k
, 1− 1

k

]
for k ∈ N. Then⋂

k∈N

Fk = ?
⋃
k∈N

Fk = ?

2. Let Hi =
[
−1, 1− 1

i

]
for i = 1..n. Then
n⋂
i=1

Hi = ?
n⋃
i=1

Hi = ?

http://www.streetmap.co.uk/place/Stichens_Green_in_West_Berkshire_569611_280611.htm
http://www.streetmap.co.uk/map.srf?x=620500&y=274500&z=120&sv=reading&st=3&tl=Map+of+Reading+Green,+Suffolk+&searchp=ids.srf&mapp=map.srf
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Proper Themes

Theorem (Bolzano-Weierstrass Theorem)
A bounded, infinite subset of Rn has an accumulation point.

Proof.
Lion in the desert.

Theorem (Heine-Borel Theorem)
A subset of Rn is compact iff it is closed and bounded.

Theorem (Cantor Intersection Theorem)
Let {Fk} be a sequence of nested (Fk+1 ⊆ Fk), closed, nonempty sets for
k ∈ N with F1 being bounded. Then

F =
n⋂
k=1

Fk

is closed and nonempty.
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CIT

Proof. (Cantor Intersection Theorem).
I. If F is finite for some, then done.

II. Each Fn is infinite. Define S =
⋂∞
k=1 Fk.

1. S is closed.
2. 2.a Define the sequence A = {ak} by choosing distinct points ak ∈ Fk

for each k. Uses: Fk ’s are infinite.

2.b Since F1 is bounded, the sequence forms a bounded, infinite set.

2.c Therefore A has an accumulation pt a. Bolzano-Weierstrass!

2.d Let r > 0 and set B = B′(a; r). Since a is an acc pt of A, then B
contains∞ many pts of A. As the Fk ’s are nested, B also must
contain∞ many pts of Fk. Whence a is an acc pt of Fk.

2.e Fk is closed, so a ∈ Fk.

2.f The Fk are nested, so a ∈
⋂
k Fk; i.e., the intersection is nonempty.

http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Bolzano.html
http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Weierstrass.html
http://en.wikipedia.org/wiki/Ralph_P._Boas,_Jr.
http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Heine.html
http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Borel.html
http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Cantor.html
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Sample Intersections

Examples (CIT)
1. Define: F0 = [0, 1]; F1 = [0, 1

3 ] ∪ [ 2
3 , 1] = F0 − ( 1

3 ,
2
3 );

F2 = [0, 1
9 ] ∪ [ 2

9 ,
1
3 ] ∪ [ 2

3 ,
7
9 ] ∪ [ 8

9 , 1]; &c. Hence

Fn =

b3n/2c⋃
k=0

[
2k

3n
,

2k + 1

3n

]
J(k,n)

Let C =
⋂
n Fn. Whence CIT =⇒ C is nonempty and closed.

2. Let Hn = [n,∞). Then Hn is a sequence of nested, closed sets.
But

⋂
nHn = ?

3. Set Jn = (−n+1
n2 ,

n+1
n2 ). Then Jn is a sequence of bounded,

nested sets.
But

⋂
n Jn = ?
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Disconnection

Connected and Separated Sets
Separated: Two sets A and B are separated iff A ∩B = ∅ = A ∩B.

Connected: A set S is connected iff S is not the union of 2
nonempty, separated sets.

Arcwise conn: Any two points in S are conn by a path inside S.

Disconnected: A set is disconnected iff S is not connected.

Region: A region is a connected set that may contain boundary
points (may be neither open or closed).

Proposition
1. Disjoint sets are separated if neither contains acc pts of the other.

2. Arcwise connected sets are connected

3. A nonempty, open, connected set is arcwise connected.

http://1.bp.blogspot.com/_UtybqKuHVAA/Sw1B5OV50BI/AAAAAAAAHn4/bP9dvD_u5Mc/s1600/put-3.jpg
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Interlude

Example (Unit Balls in R2)

|x|+ |y| = 1
√
x2 + y2 = 1 max(|x|, |y|) = 1

Proposition
The open sets are the same under each of the metrics above.
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Limits and Continuity

Definition (Limit)
• Let f :D → R, and let (a, b) ∈ D′ ⊆ R2. Then

lim
(x,y)→(a,b)

f(x, y) = L

iff [∀ε>0] [∃δ>0] [∀(x, y)∈D], if ‖(x, y)−(a, b)‖<δ, then |f(x, y)− L)|<ε.

• Let f :D → R, and let ~a ∈ D′ ⊆ Rn. Then

lim
~x→~a

f(~x) = L

iff [∀ε>0] [∃δ>0] [∀~x ∈ D], if ‖~x− ~a‖ < δ, then |f(~x)− L| < ε.

• Let f :D → R, and let ~a ∈ D′ ⊆ Rn. Then

lim
~x→~a

f(~x) = L

iff [∀ε>0] [∃δ>0], f
(
D ∩B′(~a; δ)

)
⊆ B(L; ε).
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Limiting Examples

Example (Good Function! Biscuit!)

Let f(x, y) = x sin(1/y) + y sin(1/x). Then

lim
(x,y)→(0,0)

f(x, y) = 0

Proof. Let δ(ε) = ε/2. And

|f(x, y)| ≤ |x|+ |y|

Example (Bad Function! No biscuit!)

Let g(x, y)=arctan(y/x). Then
lim

(x,y)→(0,0)
g(x, y) D.N.E.

Proof. Observe that limt→0 g(t, t) = π/4 and
limt→0 g(−t, t) = −π/4.
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Algebra of Limits

Theorem (The Algebra of Limits)
Let f, g :D → R and ~a ∈ D′. Suppose lim~x→~a f(~x) = Lf and
lim~x→~a g(~x) = Lg. Then

1. lim
~x→~a

f(~x)± g(~x) = Lf ± Lg

2. lim
~x→~a

f(~x) · g(~x) = Lf · Lg

3. lim
~x→~a

f(~x)

g(~x)
=
Lf
Lg

as long as Lg 6= 0

4. lim
~x→~a
|f(~x)| = |Lf |

5. if f(~x) <
(≤)

g(~x) on some B′(~a; r), then Lf ≤ Lg
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Continuity

Definition (Continuity)
Let f :D → R, and (a, b) ∈ D ⊆ R2. Then f is continuous at (a, b) iff
• [∀ε>0] [∃δ>0] [∀(x, y)∈D], if ‖(x, y)−(a, b)‖<δ, then
|f(x, y)− f(a, b))|<ε.

Let f :D → R, and let ~a ∈ D ⊆ Rn. Then f is continuous at ~a iff
• [∀ε>0] [∃δ>0] [∀~x ∈ D], if ‖~x− ~a‖ < δ, then |f(~x)− f(~a)| < ε.

• [∀ε>0] [∃δ>0] f
(
D ∩B(~a; δ)

)
⊆ B

(
f(~a); ε

)
.

• [∀O ⊆ R, open set] f−1(O) ⊆ Rn is an open set.

Proposition
f is continuous at ~a iff

[
∀{~an}

]
if ~an → ~a, then f(~an)→ f(~a)
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Algebra of Continuity

Theorem (The Algebra of Continuity)
Let f, g :D → R be continuous at ~a ∈ D. Then

1. f ± g is continuous at ~a

2. f · g is continuous at ~a

3. f/g is continuous at ~a as long as g(~a) 6= 0

4. |f | is continuous at ~a

Proof.
2. (D ⊆ R2) Let ~an → ~a. Since (fg)(~an) = f(~an) g(~an), and f & g are
continuous at ~a, we have f(~an) g(~an)→ f(~a) g(~a) = (fg)(~a). Thus
(fg)(~an)→ (fg)(~a) for any sequence ~an → ~a; hence, fg is
continuous at ~a.

(Note: Thm 10.2.9 has problems: g & f can’t be composed as range(f) ⊂ R1, but
dom(g) ⊂ R2. So range(f) 6⊆ dom(g).
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Continuously Reverted

Proposition
f :Rn → R is continuous iff
• the preimage of any open set (in R1) is open (in Rn).
• the preimage of any closed set (in R1) is closed (in Rn).

Proof.
(⇒) Assume f is cont and S is open in R1.

Let ~a∈f−1(S); i.e. f(~a) ∈ S. For some r>0, then B(f(a); r)⊆S.
Whence there is a δ > 0, s.t. f(B(~a; δ)) ⊆ B(f(a); r) ⊆ S.
Hence B(~a; δ) ⊆ f−1(S).

(⇐) Assume f−1(S) is open whenever S is open.
Let ~a∈f−1(S) and ε > 0. Thence f−1(B(f(~a; ε)) is open.
Thus there is a δ > 0 s.t. B(~a; δ) ⊆ f−1(B(f(~a; ε)).
Apply f to have f(B(~a; δ)) ⊆ B(f(~a; ε)).
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Continuously Pictured

Preimage

Let f(x, y) = 4 sin(x2 + y2) e(−(x2+y2)/2)

S =

(
1

2
, 1

)
=⇒ f−1(S) = {0.37<‖~x‖<0.54}

⋃
{1.50<‖~x)‖<1.78}
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Uniform

Definition (Uniform Continuity)
A function f :D → R is uniformly continuous on D iff for any ε > 0
there is a δ > 0 s.t. for all ~x1, ~x2 ∈ D, if ‖~x1 − ~x2‖ < δ, then
|f(~x1)− f(~x2)| < ε.

Theorem
If f is continuous on D, and D is closed & bounded (compact), then

1. f is bounded,
2. f attains extreme values (max and min),
3. f is uniformly continuous on D.

Proof (Homework).
1. Hint: Assume not, then look at f−1(an) where an →∞.
2. Bolzano-Weierstrass in action.
3. Hint: Assume not. Create sequences ~xn, ~yn that converge to ~a, but have
|f(~xn)− f(~yn)| > ε. Cont gives a contradiction.
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Connecting to Rudolph Otto

Theorem
Let f :D → R be continuous and let S be a connected subset of D. Then
f(S) is connected. (A connected set in R is an interval.)

Proof.
Suppose f(S) = A ∪B with A & B nonempty, separated sets in R.
Define G = S ∩ f−1(A) and H = S ∩ f−1(B).

1. S = G ∪H since f :S −→
onto

f(S).

2. Let ~y ∈ A. (A 6= ∅.) ∃~x ∈ S s.t. f(~x) = ~y. Thus ~x ∈ G =⇒ G 6= ∅.
Similarly, H 6= ∅.

3. Let ~p ∈ G ∩H. If ~p ∈ G, then ~p ∈ G ∩H. Then ~p ∈ f−1(A ∩B); i.e.,
f(~p) ∈ A ∩B = ∅. Thus ~p /∈ G, whence ~p ∈ G′ and f(~p) ∈ B. Since
A ∩B = ∅ and ~p ∈ B, ∃ε > 0 s.t. B(f(~p); ε) ∩A = ∅. Since f is cont,
∃δ > 0 s.t. f(B(~p; δ)) ⊂ B(f(~p); ε). Then B(~p; δ) ∩G is empty contrary
to ~p ∈ G′. Hence G ∩H = ∅. Similarly G ∩H = ∅.

4. Whereupon S is separated by G and H. oops→←



MAT 5620: 53

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Fun with Functions

Problem (Functions)
Let f :Rn → R be a function. Let A and B be subsets of the domain
and range of f, respectively. Then

f(A) = {y ∈ R | f(a) = y for some a ∈ A} ⊆ range(f)

f−1(B) = {x ∈ Rn | f(x) = b for some b ∈ B} ⊆ dom(f)

Give an example justifying your answer.

1. T or F: A ⊆ f−1
(
f(A)

)
2. T or F: A = f−1

(
f(A)

)
3. T or F: A ⊇ f−1

(
f(A)

)
or

f−1
(
f(A)

)
⊆ A

4. T or F: B ⊆ f
(
f−1(B)

)
5. T or F: B = f

(
f−1(B)

)
6. T or F: B ⊇ f

(
f−1(B)

)
or

f
(
f−1(B)

)
⊆ B
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Rudolph Otto S von L

Definition (Lipschitz Condition)
If there is a constant L s.t.

|f(~x1)− f(~x2)| ≤ L ‖~x1 − ~x1‖
for all f~x1, ~x2 ∈ D, then f satisfies a Lipschitz condition on D (also
called a “Lipschitz 1” condition).

Proposition
A function that is Lipschitz on D is uniformly continuous on D.

Proof.
Suppose f is Lipschitz with constant L.
Let ε > 0. Choose 0 < δ < ε/L. For any vectors ~x1 and ~x2 in dom(f)
with ‖~x1 − ~x2‖ < δ, we have

|f(~x1)− f(~x2)| ≤ L‖~x1 − ~x2‖ < Lδ < ε

http://www.gap-system.org/~history/Biographies/Lipschitz.html
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Exercise

Problem (#14, pg 447)
Consider f :R2 → R given by

f(r, θ) =

{
1
2 sin(2θ) r 6= 0

0 r = 0

1. Is f continuous in polar coordinates?
Let θ = ±π/4, resp., and r → 0. Then lim(r,π/4)→~0 f(r, θ) = 1/2, but
lim(r,−π/4)→~0 f(r, θ) = −1/2. Thus, f is not continuous at ~0 (polar).

2. Write f in rectangular coordinates.
1
2

sin(2θ) = cos(θ) sin(θ) =
x√

x2 + y2
· y√

x2 + y2
=

xy

x2 + y2

3. Is f in rectangular coordinates continuous?
Let (x, y)→ ~0 as (t, t) and as (t,−t). Then f → ±1/2 as t→ 0. Hence
f is not continuous at ~0.
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Exercise’s Graph

f(r, θ) =

{
1
2

sin(2θ) r 6= 0

0 r = 0
⇐⇒ f(x, y) =


xy

x2 + y2
x2 + y2 6= 0

0 x2 + y2 = 0

.
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Challenge Problem

Problem (Hmm.)
Define f :R2 → R by

ϕ(x, y) =


e−1/x2

y

e−2/x2 + y2
x 6= 0

0 x = 0

1. Let C be an arbitrary curve y = c xm/n for m,n ∈ N with n: odd.
Find

lim
x→0

ϕ(x, c xm/n)

2. Define the sequence ~an =
(

1
n , e
−n2
)

. Find

lim
n→∞

~an and lim
n→∞

ϕ(~an)

3. Is ϕ continuous at ~0?

MAT 5620: 58

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

The Challenge Problem Plot Thickens

ϕ(x, y) =


e−1/x2y

e−2/x2 + y2
x 6= 0

0 x = 0



MAT 5620: 59

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Partial Derivatives

Definition (Partial Derivatives)
Let D be an open set in R2, (a, b) ∈ D, and f :D → R. Then

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
,

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h

when the limits are finite.

Example (Woof!)

Let f(x, y) =
xy(x2 − y2)

x2 + y2
and f(~0) = 0. Then

fx(0, 0) = lim
h→0

f(h, 0)− 0

h
= 0

and
fy(0, 0) = lim

h→0

f(0, h)− 0

h
= 0
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Picture Time

f(x, y) = 4− 1
2 x

2 − 1
3 y

2 and ∂f
∂y (2, 1) & ∂f

∂x (2, 1)

Differentiation
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More Partial Derivatives

Examples
1. h(x, y) = x2/

√
y. Then

hx(x, y) = 2x y−1/2

hy(x, y) = − 1
2x

2y−3/2

2. g(x, y) = − cos(x+ y2). Then

gx(x, y) = sin(x+ y2)

gy(x, y) = 2y sin(x+ y2)

3. f(x, y) = x2 sin(y)− xe−xy. Then

fx(x, y) = 2x sin(y) + (xy − 1)e−xy

fy(x, y) = x2
(
cos(y) + e−xy

)
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Deeper Partial Derivatives

Theorem (Clairaut’s3 Theorem (1743))

Let D ⊂ R2 be open and f :D → R. If ∂2f
∂x∂y

and ∂2f
∂y∂x

are continuous on D,

then ∂2f
∂x∂y

= ∂2f
∂y∂x

on D.

Proof.
Let (a, b) ∈ D. Set

g(h, k) = f(a+ h, b+ k)− f(a, b+ k)− f(a+ h, b) + f(a, b)

p(x, y) = f(x+ h, y)− f(x, y) = ∆xf

q(x, y) = f(x, y + k)− f(x, y) = ∆yf

Then
g(h, k) = p(a, b+ k)− p(a, b) = ∆yp = ∆y∆xf

g(h, k) = q(a+ h, b)− q(a, b) = ∆xq = ∆x∆yf

3Presented his first paper at age 13; only one of his 19 siblings to reach adulthood.

http://www.gap-system.org/~history/Biographies/Clairaut.html
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Deeper Partial Derivatives, II

Proof (cont).
Apply the MVT to ∆yp and ∆xq above to have (for some θj ∈ (0, 1))

g(h, k) = k py(a, b+ θ1k) = k · [fy(a+ h, b+ θ1k)− fy(a, b+ θ1k)]

g(h, k) = h qx(a+ θ2h, b)) = h · [fx(a+ θ2h, b+ k)− fx(a+ θ2h, b)]

Apply the MVT to ∆xfy and ∆yfx above to have (for some θk∈(0, 1)).

g(h, k) = hk fyx(a+ θ3h, b+ θ1k)

g(h, k) = kh fxy(a+ θ2h, b+ θ4k)

Whence
fyx(a+ θ3h, b+ θ1k) = fxy(a+ θ2h, b+ θ4k)

Let h, k → 0. Since fxy and fyx are continuous, then

fyx(a, b) = fxy(a, b)
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Deeper Samples

Examples
1. g(x, y) = − cos(x+ y2). Then

gx(x, y) = sin(x+ y2) =⇒ gxy(x, y) = 2y cos(x+ y2)

gy(x, y) = 2y sin(x+ y2) =⇒ gyx(x, y) = 2y cos(x+ y2)

2. f(x, y) =
xy(x2 − y2)

x2 + y2
. Then (Maple)

fy(x, 0) =

{
x x 6= 0

0 x = 0

fx(0, y) =

{
−y y 6= 0

0 y = 0

Whence fxy(0, 0) = −1, but fyx(0, 0) = +1.

http://www.mathsci.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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Operators and Exact Equations

Definition (Operators and Annihilators)
Let C1(S) = {continuously differentiable fcns on S}.
• An operator on S is a fcn Φ:C1(S)→ C1(S).
• An annihilator is an operator combination that maps a fcn to 0.

Definition (Exact Differential Equations)
A differential equation M dx+N dy = 0 is exact iff there is a function
f(x, y) s.t. M = ∂f/∂x and N = ∂f/∂y.

Examples
• Dj = ∂

∂xj
is an operator on C1(Rn).

• L = (D − 2)2 annihilates the function fa(x) = axe2x.
• The DE (2xy + y2)dx+ (x2 + 2xy)dy = 0 is exact from
f(x, y) = x2y + x y2.
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Partial Antiderivatives and Exact Equations

Example
Solve the DE: 2xy dx+ (x2 − 1) dy = 0

Solution: Set M = 2xy and N = x2 − 1.
1. Since fx = M = 2xy, then f(x, y) =

∫
2xy dx = x2y + φ(y)

partial antiderivative
.

2. Now fy = N = (x2 − 1), so

∂

∂y

[
x2y + φ(y)

]
= x2 − 1.

Since ∂
∂y

[
x2y + φ(y)

]
= x2 + d

dyφ(y), we have φ′(y) = −1.
Whence φ(y) = −y

Putting the pieces together, f(x, y) is given by

x2y − y = c

where c is a constant of integration.

Try:
(
x+ y/(x2 + y2)

)
dx+

(
y − x/(x2 + y2)

)
dy = 0.
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Picture Time Again

f(x, y) =
1

2
(x2 + y2) + arctan

(
x

y

)
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Tangent Plane

Consider. . .
In R2

• Slope of the tangent line at x = a is f ′(a)

• Tangent line is y = f(a) + f ′(a)(x− a)

In R3

• Tangent vector in the x direction at ~a is Tx = 〈1, 0, fx(~a)〉
• Tangent vector in the y direction at ~a is Ty = 〈0, 1, fy(~a)〉
• A plane containing ~a and the tangent vectors is

(Tx × Ty) · (~x− ~a) = 0

or (with ~a = 〈x0, y0〉 and ~m~a = 〈fx(~a), fy(~a)〉)
z = f(~a) + fx(~a)(x− x0) + fy(~a)(y − y0)

= f(~a) + ~m~a · (~x− ~a)
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Differentiation

Definition (Derivative)
Let f be defined on the open set D ⊆ R2. Then f is differentiable at ~x0 ∈ D
iff there is a vector ~m s.t. Picture Time

f(~x0 + ~h) = f(~x0) + ~m · ~h+ ε‖~h‖

Equivalently: iff there is a vector ~m s.t. for T (~x) = f(~x0) + ~m · (~x− ~x0), then

lim
~x→~x0

f(~x)− T (~x)

‖~x− ~x0‖
= 0

Definition (Gradient)
The gradient (vector ) of f , written as ∇f of grad(f) is

∇f(~x0) =

〈
∂f

∂x
~x0,

∂f

∂y
~x0

〉
Note: ∇ is a vector differential operator (generalizing Dx): ∇ =

〈
∂
∂x
, ∂
∂y

〉
.

3 T (x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)
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Derivative

Nota Bene
f is differentiable4 at ~a =⇒ ∂f

∂x (~a) and ∂f
∂y (~a) both exist

∂f
∂x (~a) and ∂f

∂y (~a) both exist 6=⇒ f is differentiable at ~a

Theorem (The “Continuity of Partials Suffices” Thm)
If

1. fx and fy exist on B(~a; ε) for some ε > 0, and
2. fx and fy are continuous at ~a,

then
1. f is differentiable at ~a, and
2. f(~x) = f(~a) +∇f(~a) · (~x− ~a) + 〈ε1, ε2〉 · (~x− ~a)

where ε1, ε2 → 0 as x− ax, y − ay → 0, resp.

4 Careful: Gradient is ∇ = 〈 ∂
∂x

, ∂
∂y
〉; Total derivative f ′(~x0) is ∇f(~x0)
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Derivative

Proof (The “Continuity of Partials Suffices” Thm).
Let ~a = 〈x0, y0〉.
NTS: ∆f(~a) = ∇f(~a)·〈∆x,∆y〉+ ~ε·〈∆x,∆y〉 with ~ε→~0 as ∆x,∆y → 0.

1. Fix y. MVT⇒ ∃x1∈B(x0; r) s.t. f(x, y)− f(x0, y) = fx(x1, y)(x− x0)

2. fx∈C(D)⇒ fx(x1, y)=fx(x0, y0) + εx where εx→0 as (x, y)→(x0, y0)

So f(x, y)− f(x0, y) = [fx(x0, y0) + εx] (x− x0) where εx −→
x,y→x0,y0

0.

3. Fix x. MVT⇒ ∃y1∈B(y0; r) s.t. f(x, y)− f(x, y0) = fy(x, y1)(y − y0)

4. fy∈C(D)⇒ fy(x, y1)=fy(x0, y0) + εy where εy→0 as (x, y)→(x0, y0)

So f(x, y)− f(x, y0) = [fy(x0, y0) + εy] (y − y0) where εy −→
x,y→x0,y0

0.

Whence

f(x, y)− f(x0, y0) = [f(x, y)− f(x0, y)] + [f(x0, y)− f(x0, y0)]

= [fx(x0, y0) + εx] (x− x0) + [fy(x0, y0) + εy] (y − y0)
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Derivatives and Continuity

Theorem (D ⇒ C Thm)
If f is differentiable at ~a, then f is continuous at ~a.

Proof.
Since f is differentiable at ~a,

f(~a+ ~h)− f(~a) = ∇f(~a)· ~h+ ~ε ‖~h‖

where ~ε→ 0 as ~h→ 0. Thus∣∣∣f(~a+ ~h)− f(~a)
∣∣∣ ≤ ∣∣∣∇f(~a) · ~h

∣∣∣+ |~ε | ‖~h‖

≤ ‖∇f(~a)‖ ‖~h‖+ |~ε | ‖~h‖ = (‖∇f(~a)‖+ |~ε |) ‖~h‖
Whence lim

~x→~a
f(~x) = f(~a).
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Algebra of Derivatives

Proposition (Algebra of Derivatives)
Let f and g be differentiable functions at ~a. Then

• f ± g is differentiable at ~a

• f · g is differentiable at ~a

• f ÷ g is differentiable at ~a
as long as g(~a) 6= 0

• ∇(f ± g) = (∇f)± (∇g)

• ∇(f · g) = (∇f)g + f (∇g)

• ∇(f÷g) =
(∇f)g−f(∇g)

g2
when g(~a) 6= 0

Proof.
Homework. Pg 462, #14.

See: §10.2. Problem 4, pg461 (Maple time.)
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Directional Derivatives

Thinking Out Loud. . .
1. • fx is the derivative in the 〈1, 0〉 direction

• fy is the derivative in the 〈0, 1〉 direction

2. • (x0 + h, y0) −→
h→0

(x0, y0) equiv to 〈x0, y0〉+ h〈1, 0〉 −→
h→0
〈x0, y0〉

• (x0, y0 + k) −→
k→0

(x0, y0) equiv to 〈x0, y0〉+ k〈0, 1〉 −→
k→0
〈x0, y0〉

3. With an arbitrary direction ~u (unit vector): ~x+ h~u −→
h→0

~x0

Definition (Directional Derivative)
Let f be defined on an open set D and ~a ∈ D. Then the directional derivative
of f in the direction of ~u, a unit vector, is given, if the limit is finite, by

D~uf(~a) = lim
h→0

f(~a+ h~u)− f(~a)

h
or

∂f

∂~u
(~a) = lim

h→0

f(x+ hux, y + huy)− f(x, y)

h

http://mathsci2.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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Directional Derivative’s Properties

Theorem
If f is differentiable at ~a, then D~uf(~a) exists for any direction ~u. And

D~uf(~a) = ∇f(~a) · ~u

Proof.
Simple computation from: f(~a+ h~u) = f(~a) +∇f(~a) · (h~u) + ε‖h~u‖

Corollary (“Method of Steepest Ascent/Descent”)
Let f be differentiable at ~a. Then

1. The max rate of change of f at ~a is ‖∇f(~a)‖ in the direction of ∇f(~a).

2. The min rate of change of f at ~a is −‖∇f(~a)‖ in the direction of −∇f(~a).

Proof.
Simple computation from: D~uf(~a) = ∇f(~a) · ~u = ‖∇f(~a)‖ ‖~u‖ cos(θ)

Visit Maple.

MAT 5620: 76

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Directional Derivative’s Weird Properties

f(x, y) =
x2y

x6 + y2

Gradient field & contour plot

f is not continuous at ~0, but has directional derivatives in all directions at ~0 !

http://mathsci2.appstate.edu/~wmcb/Class/5620/MapleWorksheets/
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The Chain Rule

Theorem (The Chain Rule)
If x(t) and y(t) are differentiable at t0, and f is differentiable at
~a = (x(t0), y(t0)), then f composed with x and y is differentiable at t0
with

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Proof.
Let z = f(x, y) and ∆t = t1 − t0. Then ∆x = x(t1)− x(t0) and
∆y = y(t1)− y(t0). Since f is differentiable, we have

∆z = f(x+ ∆x, y + ∆y)− f(x, y) = fx∆x+ fy∆y + ε1∆x+ ε2∆y

So
∆z

∆t
= fx

∆x

∆t
+ fy

∆y

∆t
+ ε1

∆x

∆t
+ ε2

∆y

∆t

Since ∆t→ 0 =⇒ ∆x,∆y → 0, then ε1, ε2 → 0 with ∆t.

MAT 5620: 78

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

The Chain Rule Extended

Corollary (MCR Corollary)
If x(t, s) and y(t, s) are differentiable at (t0, s0), and z = f(x, y) is
differentiable at ~a = (x(t0, s0), y(t0, s0)), then f composed with x and
y is differentiable at (t0, s0) with

dz

dt
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
and

dz

ds
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

Two Views

[
dz

dt

dz

ds

]
=

[
∂f

∂x

∂f

∂y

]
·


∂x

∂t

∂x

∂s

∂y

∂t

∂y

∂s


= ∇f(x, y) · ∂(x, y)

∂(t, s)

= ∇f(x, y) · J(x,y)(t, s)

f(x, y)

x(t, s) y(t, s)

t s t s

@f

@x

@f

@y

@x

@t

@x

@s

@y

@s

@y

@t

@f

@x
⇥ @x

@t

@f

@x
⇥ @x

@s

@f

@y
⇥ @x

@s

@f

@y
⇥ @x

@t
+

+

@f

@t
=

# ⇥
�!
+

=
@f

@s
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The Mean Value Theorem

Theorem (MVT for Two)
Suppose f is differentiable on the open D containing the segment
L(~p, ~q). Then there is a ~c on L s.t.

f(~p )− f(~q ) = ∇f(~c ) · (~p− ~q )

Proof.
1. Set (x0, y0) = ~q and (h, k) = ~p− ~q
2. Set g(t) = f(x0 + ht, y0 + kt) for t∈ [0, 1] (g parametrizes f on L)
3. Then g(1)− g(0) = g′(θ)(1− 0) for some θ ∈ (0, 1); i.e.

f(~p )− f(~q ) = g′(θ)

4. The MCR implies

g′(t) = fx
dx
dt + fy

dy
dt = 〈fx, fy〉 · 〈dxdt ,

dy
dt 〉
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Taylor’s Theorem

Theorem (MV Taylor’s Theorem)
Suppose f has partial (n+ 1)st derivatives (of all ‘mixtures’) existing
on B(~a; r). Then for ~x = ~a+ (h, k) in B(~a; r),

f(~a+ (h, k)) =f(~a) +

(
h
∂

∂x
+ k

∂

∂y

)
f(~a)

+
1

2!

(
h
∂

∂x
+ k

∂

∂y

)2

f(~a) + · · ·

+
1

n!

(
h
∂

∂x
+ k

∂

∂y

)n
f(~a) +Rn

where

Rn =
1

(n+ 1)!

(
h
∂

∂x
+ k

∂

∂y

)n+1

f(~a+ θ(h, k))

for some θ ∈ (0, 1).
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Taylor’s Theorem Eg

Example (Second Order, Two Variable)
Find the Taylor polynomial of order 2 at ~a = 〈1, 1〉 and remainder for
f(x, y) = x2y and ~x = 〈1, 1〉+ 〈h, k〉.

1. f(~x) = f(1, 1) + [fx(1, 1) · h+ fy(1, 1) · k]

+ 1
2

[
fxx(1, 1) · h2 + 2fxy(1, 1) · hk + fyy(1, 1) · k2

]
+ 1

3!

[
fxxx(1 + θh, 1 + θk) · h3 + 3fxxy(1 + θh, 1 + θk) · h2k

+ 3fxyy(1 + θh, 1 + θk) · hk2 + fyyy(1 + θh, 1 + θk) · k3
]

where θ ∈ (0, 1)

2. f(1 + h, 1 + k) = 1 + [2h+ k] + 1
2

[
2h2 + 4hk + 0k2

]
+R2

and R2 = 1
6

[
0h3 + 6h2k + 0hk2 + 0k3

]
= h2k with θ ∈ (0, 1)
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Multiple Integration

Definition (The Double Sums)
Suppose f is bounded on R = [a, b]× [c, d]. Let P = P1 × P2 be a partition of
R given by P1 = {a = x0, . . . , xn = b} and P2 = {c = y0, . . . , ym = d} with
Rij = [xi−1, yj−1]× [xi, yj ]. Then the area of Rij is Aij = ∆xi ·∆yj
• Set ‖P‖ = max{∆xi,∆yj}.
• Define

Mij(f) = sup
Rij

f(x, y) and mij(f) = inf
Rij

f(x, y)

• Then define

U(P, f) =
∑
i

∑
j

Mij ∆xi∆yj =
∑
i,j

MijAij

L(P, f) =
∑
i

∑
j

mij ∆xi∆yj =
∑
i,j

mijAij

S(P, f) =
∑
i

∑
j

f(ci, dj) ∆xi∆yj =
∑
i,j

f(ci, dj)Aij

where (ci, dj) ∈ Rij is arbitrary.
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A Useful Lemma

Lemma
Let f be bounded on the rectangle R with partition P . Set

m = infR f(x, y) and M = supR f(x, y).

1. Then

m(b− a)(d− c) ≤ L(P, f) ≤ S(P, f) ≤ U(P, f) ≤M(b− a)(d− c)

2. If Q partitions R and P ⊆ Q, then

L(P, f) ≤ L(Q, f) and U(Q, f) ≤ U(P, f)

3. For any partitions P and Q of R, L(P, f) ≤ U(Q, f).

4. sup
P
L(P, f) ≤ inf

P
U(P, f)

5. The area of R is A =
∑
ij Aij = (b− a)(d− c)
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The Integral

Definition (Double Integral)
Let f be bounded on the rectangle R. Then f is Riemann integrable on R iff
the upper double integral and the lower double integral, resp.,

x

R
f dA = inf

P
U(P, f) and

x

R
f dA = sup

P
L(P, f)

both exist and are equal. We write
x

R
f dA for the common value.

Theorem
A bounded function f on the rectangle R is Riemann integrable iff

1. for any ε > 0 there is a partition P of R s.t.

U(P, f)− L(P, f) < ε.

2. there is a seq of partitions {Pn} s.t.

lim
n→∞

U(Pn, f) = I = lim
n→∞

L(Pn, f).
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A Sample

Example

Find
x

R

f dA when f(x, y) = 1
2

sin(x+ y) and R = [0, π
2

]2.

1. Use a uniform grid: xi= i
n
π
2

, yj = j
n
π
2

, & (ci, dj)=(xi, yj) for i, j = 0..n

2. A generic Riemann sum becomes

S(Pn, f) =
∑

i,j∈[1,n]

f
(
i
n
π
2
, j
n
π
2

) (
i
n
π
2
− i−1

n
π
2

) (
j
n
π
2
− j−1

n
π
2

)
= π2

4n2

∑
i,j∈[1,n]

1
2

sin
(
i
n
π
2

+ j
n
π
2

)
3. Since sin(x+ y) = sin(x) cos(y) + cos(x) sin(y), we have

S(Pn, f) = π2

8n2

∑
i,j∈[1,n]

[
sin
(
i
n
π
2

)
cos
(
j
n
π
2

)
+ cos

(
i
n
π
2

)
sin
(
j
n
π
2

)]
= π2

8n2

∑
i,j∈[1,n]

[
sin
(
i
n
π
2

)
cos
(
j
n
π
2

)]
+

∑
i,j∈[1,n]

[
cos
(
i
n
π
2

)
sin
(
j
n
π
2

)]
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A Sample (cont)

Example (cont)
4. Distribute the sums

S(Pn, f) = π2

8n2

[
n∑
i=1

sin
(
i
n
π
2

) n∑
j=1

cos
(
j
n
π
2

)
+

n∑
i=1

cos
(
i
n
π
2

) n∑
j=1

sin
(
j
n
π
2

)]

= 2 π2

8n2

n∑
i=1

cos
(
i
n
π
2

) n∑
j=1

sin
(
j
n
π
2

)
=

[
π
2n

n∑
i=1

cos
(
i
n
π
2

)]
·

[
π
2n

n∑
j=1

sin
(
j
n
π
2

)]

5. lim
n→∞

π
2n

n∑
j=1

T
(
j
n
π
2

)
=

∫ π/2

0

T (x) dx, so

lim
n→∞

S(Pn, f) =

∫ π/2

0

cos(x) dx ·
∫ π/2

0

sin(x) dx = 1

6. Whence
x

[0,π/2]×[0,π/2]

1
2

sin(x+ y) dA = 1
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Continuous Functions

Theorem (Continuous Functions Are Integrable)
If f is continuous on R = [a, b]× [c, d], then f is integrable on R.

Proof.
Let ε > 0. Set A = area(R).

1. Since f is cont on R, then f is unif cont on R. Hence there is a
δ > 0 s.t. whenever ~x1, ~x2 ∈ R with ‖ ~x1 − ~x2‖ < δ, then
|f( ~x1)− f( ~x2)| < ε.

2. Choose a partition P s.t. ‖P‖ < δ.

3. Then U(P, f)− L(P, f) =
∑
i,j

Mij∆xi∆yj −
∑
i,j

mij∆xi∆yj . I.e.,

U(P, f)− L(P, f) =
∑
i,j

(Mij −mij)∆Aij <
∑
i,j

ε∆Aij = Aε
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Bilinearity

Theorem (Bilinearity of Integration)
1. Let f1 and f2 be integrable on R, and c1 and c2 be constants.

Then x

R

c1f1 ± c2f2 dA = c1
x

R

f1 dA± c2
x

R

f2 dA

2. Let f be bounded on R = R1 +R2.
2.1 Then f is integrable on R iff f is integrable on R1 and R2.
2.2 If f is integrable on R, then

x

R

f dA =
x

R1

f dA+
x

R2

f dA

Proposition
Let f be integrable on R with m = minR f and M = maxR f . Then

m · area(R) ≤
x

R

f dA ≤M · area(R)
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Iteration

Thinking Out Loud. . .
1. Fix x∗. Suppose f(x∗, y) is an integrable function of y. Define

g(x) =

∫
[c,d]

f(x, y) dy

Then integrate g to get ∫
[a,b]

[∫
[c,d]

f(x, y) dy

]
dx

2. Fix y∗. Suppose f(x, y∗) is an integrable function of x. Define

h(y) =

∫
[a,b]

f(x, y) dx

Then integrate h to get ∫
[c,d]

[∫
[a,b]

f(x, y) dx

]
dy

How do these integrals relate to
s
R
f dA?
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Iteration and Guido Fubini

Theorem (Fubini (1910))
Let f be integrable on a rectangle R. If for each x, the function h(y) = f(x, y)

is integrable over y ∈ [c, d], then g(x) =
∫ d
c
f(x, y) dy is integrable for

x ∈ [a, b], and x

R

f dA =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx

Corollary
Let f be integrable on a rectangle R. If

1. h(y) = f(x, y) is integrable over y ∈ [c, d], and

2. k(x) = f(x, y) is integrable over x ∈ [a, b],

then x

R

f dA =

∫ b

a

[∫ d

c

f(x, y) dy

]
dx =

∫ d

c

[∫ b

a

f(x, y) dx

]
dy

http://www.gap-system.org/~history/Biographies/Fubini.html
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Proving Fubini’s Theorem

Proof (sketch).
Let ε > 0.

1. Find a partition P of [a, b]× [c, d] where U(P, f)− L(P, f) < ε

2. ‘Slice’ this partition into P1(x)× P2(y).

3. Use U(P1, g)− L(P1, g) < U(P, f)− L(P, f) to show

g(x) =

∫
[c,d]

f(x, y)dy is integrable over [a, b].

4. Show L(P, f) ≤
∫

[a,b]

g dx ≤ U(P, f)

5. Conclude
∫

[a,b]

g(x) dx =
x

R

f(x, y)dA

6. Use symmetry to have
∫

[c,d]

h(y) dy =
x

R

f(x, y)dA

Observe the doneness of the proof.
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Fubini Examples

Example (Good Function! Biscuit!)

Let N(x, y) = e−(x2+y2) and R = R2.

1. Change to polar coordinates.
x

R

N(x, y) dA =
x

[0,∞]×[0,2π]

N(r, θ) dA

2. Apply Fubini’s thm two ways:

2.1
x

R

N(r, θ) dA =

∫ 2π

0

[∫ ∞
0

e−r
2

r dr

]
dθ =

∫ 2π

0

1
2
dθ = π

2.2
x

R

e−x
2

e−y
2

dA=

∫ ∞
−∞
e−y

2
[∫ ∞
−∞
e−x

2

dx

]
dy=

∫ ∞
−∞
e−y

2

dy ·
∫ ∞
−∞
e−x

2

dx

3. Whence
∫ ∞
−∞

e−x
2

dx =
√
π. Whereupon

∫ ∞
−∞

1√
2π
e−

1
2
x2dx = 1.
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Fubini Examples II

Example (Bad Function! No Biscuit!)

Let f(x, y) =
x2 − y2

(x2 + y2)2
on R = [0, 1]× [0, 1].

1.
∫ 1

0

[∫ 1

0

f(x, y) dx

]
dy = −π

4

2.
∫ 1

0

[∫ 1

0

f(x, y) dy

]
dx = +

π

4

3.
∫ 1

0

[∫ 1

0

|f(x, y)| dy
]
dx =∞

So
x

R

f(x, y) dA does not exist
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The Leibniz Rule

Theorem (Leibniz Rule)
Suppose f has continuous partials on R = [a, b]× [c, d]. Set

g(x) =

∫ d

c

f(x, y) dy. Then g is differentiable on (a, b) and

d

dx
g(x) =

∫ d

c

∂

∂x
f(x, y) dx

Proof.
1. f has cont partials =⇒ f is cont and differentiable on int(R)

2. Then f is integ., so for every fixed x∗, f(x∗, y) is integ. on [c, d]

3. Choose x 6= x∗, then ∃x0 between x and x∗ s.t.

g(x)− g(x∗)
x− x∗ =

∫ d

c

f(x, y)− f(x∗, y)

x− x∗ dy =

∫
fx(x0, y) dy

4. Take limits as x→ x∗ to finish
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Camille Jordan’s Content

Definition (Jordan Content Zero)
A set S has Jordan content zero iff for each ε > 0 there is a finite
collection R of rectangles Rij s.t.
• S ⊆ ⋃ij Rij
• area(R) =

∑
ij area(Rij) < ε

A bounded setD is Jordan measurable iff ∂D has Jordan content zero.

Examples
• log spiral on [9.5297−1, 9.5297] • unit disk
• Hilbert’s plane filling curve, space filling curve

Proposition
• Rectifiable curves have Jordan content zero.
• The union of sets of content zero has content zero.
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Jordan’s Extension

Theorem
If f is continuous on R = [a, b]× [c, d] except on a set of Jordan content zero,
then f is integrable on R.

Proof.
1. Since R is compact and f is cont, ∃M > 0 s.t. |f(x, y)| < M on R.

2. For each Rij we see Mij −mij < 2M .

3. Let S be the set of discontinuities of f . So S has content zero.

4. Let ε > 0. Find P s.t. for the rect’s covering S, the
∑

area(Rij) < ε

5. Divide the P into PS and PS̄ where PS contains the rectangles covering
S. Then U(P )− L(P ) = [U(PS) + U(PS̄)]− [L(PS) + L(PS̄)].

6. Combine with 4: U(PS)− L(PS) ≤
∑

(Mij −mij)∆Aij < 2Mε

7. f is unif cont on PS̄ so refine P to obtain Mij −mij < ε on P ′

8. Then
∑

Rij∈P ′
(Mij −mij)∆Aij < ε

∑
∆Aij < εA

http://www.gap-system.org/~history/Biographies/Jordan.html
http://www.youtube.com/watch?v=dkGJIIdQQI8
http://www.openprocessing.org/visuals/?visualID=7356
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Bounded, Jordan-Measurable Regions

Proposition (Integral on a B’nded, Jordan-Mble Set)
Let D be a bounded, Jordan-measurable region in R2 and let f be
continuous on D. Define χD(x) = 1 for x ∈ D and 0 for x /∈ D.
Suppose the rectangle R ⊃ D.

•
x

D

f dA
∆
=

x

R

f χD dA

• If D is the region [a, b]× [α(x), β(x)] where α ≤ β, then
x

D

f dA
∆
=

∫ b

a

∫ β(x)

α(x)

f(x, y) dy dx

• If D is the region [α(y), β(y)]× [c, d] where α ≤ β, then
x

D

f dA
∆
=

∫ d

c

∫ β(y)

α(y)

f(x, y) dx dy
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Dirichlet’s Formula

Dirichlet ⊂ Fubini

∫ b

a

∫ b

x

f(x, y) dy dx

∫ b

a

∫ y

a

f(x, y) dx dy
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Line Integrals

Definition (Line Integral)
If f is continuous on a region D containing a smooth curve C, then
the line integral of f along C is∫

C

f ds = lim
n→∞

n∑
k=1

f(ci, di) ∆si

Proposition
If C has a smooth parametrization (x(t), y(t)) for t ∈ [a, b], then∫

C

f ds =

∫ b

a

f(x(t), y(t)) s′(t) dt

=

∫ b

a

f(x(t), y(t))
√

[x′(t)]2 + [y′(t)]2 dt
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Line Integrals Are Linear

Proposition (Algebraic Properties)

1.
∫
−C

f ds = −
∫
C

f ds

2.
∫
C

f ds =

n∑
i=1

∫
Ci

f ds where C =
⋃
i Ci

3.
∣∣∣∣∫
C

f ds

∣∣∣∣ ≤ML where L = length(C) & M ≥ max
C
|f(x, y)|.

Examples
1.
∫
C
xy dx+ (x2 + y2)dy with C the unit circle in the 1st quadrant

2.
∫
C
x ds with C the unit circle in the 1st quadrant

3.
∫
S
xy dx+ (x2 + y2)dy with S being the unit square having the

vertex set [(1, 0), (1, 1), (0, 1), (0, 0)]
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Green’s Theorem

Theorem (Green’s Theorem5)
Let D be a simple region in R2 with a positively-oriented, closed
boundary ∂D. If ~F (x, y) = 〈M(x, y), N(x, y)〉 is a continuously
differentiable vector field on an open region containing D, then∮

∂D

M dx+N dy =
x

D

(Nx −My)dx dy

Theorem (Differential Forms Version)

For D as above and a differentiable (n− 1)-form ω,
∫
∂D

ω =

∫
D

dω

Corollary (Area of a Region)

For f and D as above, Area(D) = 1
2

∮
∂D

x dy − y dx.

5There are a number of equivalent forms of Green’s Theorem.
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Interlude

Green’s Theorem Applied6

A Planimeter

6Build your own planimeter.

http://www.gap-system.org/~history/Biographies/Green.html
http://www.owlnet.rice.edu/~fjones/chap12.pdf
http://mathworld.wolfram.com/Differentialk-Form.html
http://www.ams.org/samplings/feature-column/fcarc-surveying-two
http://www.lasico.com/page4.html
http://persweb.wabash.edu/facstaff/footer/Papers/Foote.Sandifer.Reprint.pdf
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Proving Green’s Theorem

Proof.
I. D = {(x, y) : a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x)}. By linearity, NTS:∮

∂D

M dx = −
x

D

My and
∮
∂D

N dy =
x

D

Nx

1. Now
x

D

My =

∫ b

a

∫ g2

g1

My dy dx.

2. The FToC gives
x

D

My =

∫ b

a

[M(x, g2)−M(x, g1)]dx

3. Decompose ∂D into D1 = {x, g1(x)}, D2 = {x = b, g1(b) ≤ y ≤ g2(b)},
D3 = {x, g2(x)}, and D4 = {x = a, g2(a) ≥ y ≥ g1(a)}

4. On D2 and D4, dx = 0, so
∮
∂D

=
∮
D1

+
∮
D3

5. Then
∮
∂D

M dx =

∫ b

a

M(t, g1(t)) dt+

∫ a

b

M(t, g2(t)) dt

=

∫ b

a

M(t, g1(t))−M(t, g2(t)) dt= −
x

D

My. Aha!
∮
∂D

M dx = −
x

D

My.

II. Analogously,
∮
∂D

N dy =
x

D

Nx.
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Forms of Green’s Theorem

Theorem
“Under suitable conditions,”

1.
∮
∂D

M dx+N dy =

∮
∂D

~F · ~T ds Circulation Thm

2.
∮
∂D

M dx−N dy =

∮
∂D

~F · ~N ds Flux Thm

3.
x

D

(Mx +Ny) dA =
x

D

div(~F ) dA Divergence Thm

4.
x

D

(Nx −My) dA =
x

D

curl(~F ) dA Curl Thm

div(~v) = ∇ · ~v and curl(~v) = ∇× ~v
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Introduction to Lebesgue Measure

Prelude
There were two problems with calculus:
there are functions where

• f(x) 6=
∫
f ′(x) dx

• f(x) 6= d

dx

[∫
f(x) dx

]
In his 1902 dissertation, “Intégrale, long-
ueur, aire,” Lebesgue wrote, “It thus
seems to be natural to search for a defi-
nition of the integral which makes integra-
tion the inverse operation of differentiation
in as large a range as possible.”

Henri Lebesgue's Mathematical Genealogy 
 (partial)

Lebesgue

Johan Bernoulli

Euler

1726

Lagrange

1754

Poisson

1754

Fourier

1800?

Dirichlet

1827

Chasles

1814

Liouville

18361827

d'Alembert

Laplace

?

1754

Darboux

1866

Catalan

1841

Cartan

1894

Goursat

1881

Picard

1877

Stieltjes

1886Borel

1893

Lie

1894

Bernstein

1904

Julia

1907

Weil

1928

Hermite

1886

Poincaré

1879

1841

1902
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What’s in a Measure

Goals
THE BESTmeasure would be a real-valued set functionµ that satisfies

1. µ(I) = length(I) where I is an interval
2. µ is translation invariant: µ(x+ E) = µ(E) for any x ∈ R
3. if {En} is pairwise disjoint, then µ(

⋃
nEn) =

∑
n µ(En)

4. dom(µ) = P(R) (the power set of R)

THE BAD NEWS:{
continuum hypothesis

+ axiom choice

}
=⇒ 1, 3, and 4 are incompatible

THE PLAN:

• Give up on 4. (cf. Vitali)
• 1. and 2. are nonnegotiable
• Weaken 3., then reclaim it

http://www.gap-system.org/~history/Biographies/Lebesgue.html
http://mathsci2.appstate.edu/~wmcb/IA/Images/LebesgueGenealogy.jpg
http://en.wikipedia.org/wiki/Vitali_set
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Sigma Algebras

Definition
Sigma Algebra of Sets

Algebra: A collection of sets A is an algebra iff A is closed under
unions and complements.

σ-Algebra: An algebra of sets A is a σ-algebra iff A is closed under
countable unions.

Proposition
Let A be a nonempty algebra of sets of reals. Then
• ∅ and R ∈ A.
• A is closed under intersection.

Let A be a nonempty σ-algebra of sets of reals. Then
• A is closed under countable intersections.
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Sigma Samples

Examples
1. A = {∅,R}

2. F = {F ⊂ R : F is finite or F c is finite}
2.1 F is an algebra, the co-finite algebra
2.2 F is not a σ-algebra

For each r ∈ Q, the set {r} ∈ F . But
⋃
r∈Q{r} = Q /∈ F

3. Let A = {∅, [−1, 1], (−∞,−1) ∪ (1,∞),R}. Is A an algebra?

4. Any intersection of σ-algebras is a σ-algebra

5. Let B(R) be the smallest σ-algebra containing all the open sets,
the Borel σ-algebra.
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Outer Measure

Definition (Lebesgue Outer Measure)
Let E ⊂ R. Define the Lebesgue Outer Measure µ∗ of E to be

µ∗(E) = inf
E⊂⋃ In

∑
n

`(In),

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)
If A ⊆ B, then µ∗(A) ≤ µ∗(B).

Proposition
If I is an interval, then µ∗(I) = `(I).
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Outer Measure of an Interval

Proof.
I. I is closed and bounded (compact). Then I = [a, b].

1. For any ε > 0, [a, b] ⊂ (a− ε, b+ ε). So µ∗(I) ≤ b− a+ 2ε. Since ε is
arbitrary, µ∗(I) ≤ b− a.

2. Let {In} cover [a, b] with open intervals. There is a finite subcover for
[a, b]. Order the subcover so that consecutive intervals overlap. Then∑

N

`(Ik) = (b1 − a1) + (b2 − a2) + · · ·+ (bN − aN )

Rearrange∑
N

`(Ik) = bN − (aN − bN−1)− (aN−1 − bN−2)− · · · − (a2 − b1)− a1

≥ bN − a1 > b− a

Whence µ∗(I) = b− a.
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Outer Measure of an Interval, II

Proof (cont).
II. Let I be any bounded interval and ε > 0.

1. There is a closed interval J ⊂ I so that `(I)− ε < `(J). Then

`(I)− ε < `(J) = µ∗(J) ≤ µ∗(I) ≤ µ∗(Ī) = `(Ī) = `(I)

III. Suppose I is infinite.

1. Then for each n, there is a closed interval J ⊂ I s.t. `(J) = n

2. Thence µ∗(I) ≥ n for all n.

Aha! µ∗(I) =∞

Proposition
µ∗(Q) = 0

Proof.
Order Q as {r1, r2, . . . }. {In = (rn − ε/2n, rn + ε/2n)} covers Q
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Countable Subadditivity

Theorem (µ∗ is Countably Subadditive)

Let {En} be a countable set sequence in R. Then µ∗
(⋃

n

En

)
≤
∑
n

µ∗(En)

Proof.
I. If µ∗(En) =∞ for any n, then done.
II. Let ε > 0

1. For each n find a cover {In,j}n∈N such that
∑
j∈N

`(In,j) < µ∗(En) + ε
2n

2. Then {In,j}n,j∈N covers E =
⋃
nEn.

3. Whereupon

µ∗(E) ≤
∑
n,j∈N

`(In,j) =
∑
n∈N

∑
j∈N

`(In,j)


<
∑
n∈N

[
µ∗(En) +

ε

2n

]
=
∑
n∈N

[µ∗(En)] + ε
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Open Holding & Lebesgue’s Measure

Corollary
Given E ⊆ R and ε > 0, there is an open set O ⊇ E s.t.

µ∗(E) ≤ µ∗(O) ≤ µ∗(E) + ε

Definition (Carathéodory’s Condition)
A set E is Lebesgue measurable iff for every (test) set A,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)
Let M be the collection of all Lebesgue measurable sets.

Corollary
For any A and E,

µ∗(A) = µ∗
(
(A ∩ E) ∪ (A ∩ Ec)

)
≤ µ∗(A ∩ E) + µ∗(A ∩ Ec)
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Much Ado About Nothing

Theorem
If µ∗(E) = 0, then E ∈M; i.e., E is measurable.

Proof.
Given the previous corollary, we need only show that

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A)

1. Since A ∩ E ⊂ E, then µ∗(A ∩ E) ≤ µ∗(E) = 0.
2. Since A ∩ Ec ⊂ A, then µ∗(A ∩ Ec) ≤ µ∗(A).

Whence µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ 0 + µ∗(A) = µ∗(A).

Corollary
µ∗(Q) = 0 =⇒ Q ∈M

http://www.gap-system.org/~history/Biographies/Caratheodory.html
http://www.youtube.com/watch?v=PIACPr5XEQM
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Unions Work

Theorem
A finite union of measurable sets is measurable.

Proof.
Let E1 and E2 ∈M. Let A be a test set.

1. Use A ∩ Ec1 as a test set for E2 which is measurable. Thence

µ∗(A ∩ Ec1) = µ∗((A ∩ Ec1) ∩ E2) + µ∗((A ∩ Ec1) ∩ Ec2)

2. Note A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ (A ∩ E2 ∩ Ec1). Whereupon

µ∗(A ∩ (E1 ∪E2)) + µ∗(A ∩ (E1 ∪E2)c)

= µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ (Ec1 ∩ Ec2))

≤
[
µ∗(A ∩ E1) + µ∗(A ∩ E2 ∩ Ec1)

]
+ µ∗(A ∩ Ec1 ∩ Ec2)

≤ µ∗(A ∩ E1) +
[
µ∗(A ∩ Ec1 ∩ E2) + µ∗(A ∩ Ec1 ∩ Ec2)

]
= µ∗(A ∩ E1) + µ∗(A ∩ Ec1)

= µ∗(A)
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Countable Unions Work

Theorem
The countable union of measurable sets is measurable.

Proof.
Let Ek ∈M and E =

⋃
nEn. Choose a test set A.

We need to show µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A).
1. Set Fn =

⋃n
Ek and F =

⋃∞
Ek = E. Define G1 = E1,

G2 = E2 − E1, . . . , Gk = Ek −
⋃k−1

Ej , and G =
⋃
Gk. Then

(i) Gi ∩Gj = ∅, (i 6= j) (ii) Fn =
n⋃
Gk (iii) F = G = E

2. Test Fn with A to obtain µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F cn)

3. Test Gn with A ∩ Fn to obtain

µ∗(A ∩ Fn) = µ∗((A ∩ Fn) ∩Gn) + µ∗((A ∩ Fn) ∩Gcn)

= µ∗(A ∩Gn) + µ∗(A ∩ Fn−1)
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Countable Unions Work, II

Proof.
4. Iterate µ∗(A ∩ Fn) = µ∗(A ∩Gn) + µ∗(A ∩ Fn−1) from 3 to have

µ∗(A ∩ Fn) =
n∑
k=1

µ∗(A ∩Gk)

5. Since Fn ⊆ F , then F c ⊆ F cn for all n, then

µ∗(A ∩ F cn) ≥ µ∗(A ∩ F c)

6. Whence
µ∗(A) ≥

n∑
k=1

µ∗(A ∩Gk) + µ∗(A ∩ F c)

The summation is increasing & bounded, so convergent.

7. However
∞∑
k=1

µ∗(A ∩Gk) ≥ µ∗
(
∞⋃
k=1

(A ∩Gk)

)
= µ∗(A ∩ F )

Aha! µ∗(A) ≥ µ∗(A ∩ F ) + µ∗(A ∩ F c)
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Everything Works

Corollary
The collection of Lebesgue measurable sets M is a σ-algebra.

Corollary
The Borel sets are measurable. (There are measurable, non-Borel
sets.) B(R) $ M $ P(R)

Definition (Lebesgue Measure)
Lebesgue measure µ is µ∗ restricted to M. So µ :M→ [0,∞].

Definition (Almost Everywhere)
A property P holds almost everywhere (a.e.) iff µ

(
{x : ¬P (x)}

)
= 0.

http://www.youtube.com/watch?v=1vuFhmsGcx4
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The Return of Additivity

Theorem
Let {En} be a countable (finite or infinite) sequence of pairwise disjoint sets
in M. Then

µ

(
∞⋃
k=1

Ek

)
=
∞∑
k=1

µ(Ek)

Proof.
I. n is finite.

1. For n = 1,D

2.
(⋃n

k=1 Ek
)
∩ En = En and

(⋃n
k=1 Ek

)
∩ Ecn =

⋃n−1
k=1 Ek

3. µ
(⋃n

k=1 Ek
)

= µ
([⋃n

k=1 Ek
]
∩ En

)
+ µ

([⋃n
k=1 Ek

]
∩ Ecn

)
= µ(En) + µ

(⋃n−1
k=1 Ek

)
= µ(En) +

∑n−1
k=1 µ(Ek) =

∑n
k=1 µ(Ek)

II. n is infinite.
1.
⋃n
k=1 Ek ⊂

⋃∞
k=1 Ek =⇒ µ

(⋃n
k=1 Ek

)
=
∑n
k=1 µ(Ek) ≤ µ

(⋃∞
k=1 Ek

)
2. A bnded & incr sum converges. Thus

∑∞
k=1 µ(Ek) ≤ µ

(⋃∞
k=1 Ek

)
3. Subadditivity finishes the proof. 2
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Adding an Example

Example

Set En =
(
n−1
n , n

n+1

)
for n = 1..∞.

1. The En are pairwise disjoint.

2. µ(En) = `(En) = n
n+1 − n−1

n = 1
n(n+1)

3. µ
( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En) =
∞∑
n=1

1
n(n+1) =

∞∑
n=1

[
1
n − 1

n+1

]
Whence µ

( ∞⋃
n=1

En

)
= 1.

NOTA BENE:
∞⋃
n=1

En=(0, 1)−
{

1
2 ,

2
3 ,

3
4 , . . .

}
. Hence

∞⋃
n=1

En=(0, 1) a.e.
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Matryoshka

Theorem
If {En} is a seq of nested, measurable sets with µ(E1) <∞, then

µ

(
∞⋂
n=1

En

)
= lim
n→∞

µ(En)

Proof.

1. Set E =
∞⋂
k=1

Ek. Set Fk = Ek − Ek+1. The Fk are pairwise disjoint.

2. Since
∞⋃
k=1

Fk = E1−E, then µ(E1−E) =
∞∑
k=1

µ(Fk) =
∞∑
k=1

µ(Ek − Ek+1).

3. If A ⊂ B, then µ(A−B) = µ(A)− µ(B). Apply to the formula above.

4. µ(E1)− µ(E) =
∞∑
k=1

µ(Ek)− µ(Ek+1) = µ(E1)− lim
k→∞

µ(Ek)

Since µ(E1) is finite, we’re done.
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The Cantor Set

Cantor Sets7

I. Constructing C

1. Set C0 = [0, 1]

2. Set C1 = C0 − ( 1
3
, 2

3
)

3. Set C2 = C1 − ( 1
32 ,

2
32 )− ( 7

32 ,
8
32 )

4. Set C3 = C2 − ( 1
33 ,

2
33 )− ( 7

33 ,
8
33 )− ( 19

33 ,
20
33 )− ( 25

33 ,
26
33 )

5. Let C =
⋂
Ci

II. Properties of C
1. µ(C0) = 1, µ(C1) = 2/3,

µ(C2) = 4/9, µ(C3) = 8/27,
. . . So µ(Cn) = 2

3
µ(Cn−1) = 2n

3n

Whence µ(C) = 0.
2. C is uncountable
3. C is perfect

4. C is nowhere dense

5. C is compact

6. C is totally disconnected

7. (∀i) ∂Ci ⊂ C
8. (∀i) 1

4
/∈ ∂Ci, but 1

4
∈ C

7Cantor gave the set in a footnote to show “perfect” 6⊂ “everywhere dense”.

http://russian-crafts.com/images/nesting-dolls/nesting-doll-first.jpg
http://www.google.com/search?client=safari&rls=en&q=Cantor+mactutor&ie=UTF-8&oe=UTF-8
http://www.cut-the-knot.org/do_you_know/Cantor2.shtml
http://mathworld.wolfram.com/PerfectSet.html
http://mathworld.wolfram.com/NowhereDense.html
http://mathworld.wolfram.com/TotallyDisconnectedSpace.html
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Not So Strange After All

Theorem
Let E ⊆ R and let ε > 0. TFAE:

1. E is measurable
2. There is an open set O ⊃ E s.t. µ∗(O − E) < ε

3. There is a closed set F ⊂ E s.t. µ∗(E − F ) < ε

Proposition
Let S and T be measurable subsets of R. Then

µ(S ∪ T ) + µ(S ∩ T ) = µ(S) + µ(T )
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Functionally Measurable

Theorem (Measurability Conditions for Functions)
Let f :D → R∞ for some D ∈M. TFAE

1. For each r ∈ R, the set f−1
(
(r,∞)

)
is measurable.

2. For each r ∈ R, the set f−1
(
[r,∞)

)
is measurable.

3. For each r ∈ R, the set f−1
(
(−∞, r)

)
is measurable.

4. For each r ∈ R, the set f−1
(
(−∞, r]

)
is measurable.

Proof.
1⇒ 2: {x | f(x) ≥ r} =

⋂
n{x | f(x) > r − 1/n}

2⇒ 3: {x | f(x) < r} = D − {x | f(x) ≥ r}

3⇒ 4: {x | f(x) ≤ r} =
⋂
n{x | f(x) < r + 1/n}

4⇒ 1: {x | f(x) > r} = D − {x | f(x) ≤ r}
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The Measurably Functional

Corollary
If f satisfies any measurability condition, then {x | f(x) = r} is measurable
for each r.

Definition (Measurable Function)
If a function f :D → R∞ has measurable domain D and satisfies any of the
measurability conditions, then f is measurable.

Definition
Step function: φ : [a, b]→ R∞ is a step function if there is a partition a = x0

< x1 < · · · < xn = b s.t. φ is constant on each interval Ik = (xk−1, xk), then

φ(x) =
n∑
k=1

akχIk (x)

Simple function: A function ψ with range {a1, a2, . . . , an} where each set
ψ−1(ak) is measurable is a simple function.
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Simply Stepping

Proposition
Step functions and simple functions are measurable

Theorem (Algebra of Measurable Functions)
Let f and g be measurable on a common domain D, and let c ∈ R. Then

1. f + c

2. c · f
3. f ± g
4. f2

5. f · g

are all measurable.

Proof.
• D
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Sequencing

Theorem
Let {fn} be a sequence of measurable functions on a common domain D.
Then

1. sup {f1, . . . , fn}

2. inf {f1, . . . , fn}

3. sup
n→∞

fn

4. inf
n→∞

fn

5. lim sup
n→∞

fn

6. lim inf
n→∞

fn

are all measurable.

Proof.

1. Set f = {f1, . . . , fn}. Then {f(x) > r} =
n⋃
k=1

{fk(x) > r}.

3. Set F = supn fn. Then {F (x) > r} =
∞⋃
k=1

{fk(x) > r}.

5. Set Φ = lim supn fn. Then lim sup
n→∞

fn = inf
n

[
sup
k≥n

fk

]
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Zeroing

Theorem
If f is measurable and f = g a.e., then g is measurable.

Definition (Converence Almost Everywhere)
A sequence {fn} converges to f almost everywhere, written as fn → f a.e.,
iff µ

(
{x :fn(x) 6→ f(x)}

)
= 0.

Theorem
Let f : [a, b]→ R. Then f is measurable iff there is a seq. of simple functions
{ψn} converging to f a.e.



MAT 5620: 129

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

A Simple Proof

Proof.
(⇒) Wolog f ≥ 0.

1. Define An,k =
{
x
∣∣k−1

2n ≤ f(x) < k
2n

}
for k = 1..(n · 2n) and

A0,n = [a, b]−
n2n⋃
k=1

An,k

2. Set ψn(x) = nχA0,n
(x) +

n2n∑
k=1

k − 1

2n
· χAn,k(x)

3. Then
3.1 ψ1 ≤ ψ2 ≤ · · ·
3.2 If 0 ≤ f(x) ≤ n, then |f − ψn| < 2−n

3.3 limn ψ = f a.e.

(⇐) D
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Integration

We began by looking at two examples of integration problems.
• The Riemann integral over [0, 1] of a function with infinitely many

discontinuities didn’t exist even though the points of discontinuity
formed a set of measure zero.
(The points of discontinuity formed a dense set in [0, 1].)

• The limit of a sequence of Riemann integrable functions did not
equal the integral of the limit function of the sequence.
(Each function had area 1/2, but the limit of the sequence was the
zero function.)

We will look at Riemann integration, then Riemann-Stieltjes
integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge,
Perron, etc. See the list given in the “See also” section of Integrals on
Mathworld.

http://mathworld.wolfram.com/Integral.html
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Riemann Integral

Definition
• A partition P of [a, b] is a finite set of points such that
P = {a = x0 < x1 < · · · < xn−1 < xn = b}.

• Set Mi = sup f(x) on [xi−1, xi]. The upper sum of f on [a, b] w.r.t. P is

U(P, f) =
n∑
i=1

Mi ·∆xi

• The upper Riemann integral of f over [a, b] is∫̄ b

a

f(x) dx = inf
P

U(P, f)

Exercise
1. Define the lower sum L(P, f) and the lower integral

∫
¯

b
af .
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Definitely a Riemann Integral

Definition
If
∫̄ b
a
f(x) dx =

∫
¯
b
af(x) dx, then f is Riemann integrable and is written as∫ b

a
f(x) dx and f ∈ R on [a, b].

Proposition
A function f is Riemann integrable on [a, b] if and only if for every ε > 0 there
is a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

Theorem
If f is continuous on [a, b], then f ∈ R on [a, b].

Theorem
If f is bounded on [a, b]with only finitely many points of discontinuity, then
f ∈ R on [a, b].
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Properties of Riemann Integrals

Proposition
Let f and g ∈ R on [a, b] and c ∈ R. Then

•
∫ b
a
cf dx = c

∫ b
a
f dx

•
∫ b
a

(f + g) dx =
∫ b
a
f dx+

∫ b
a
g dx

• f · g ∈ R

• if f ≤ g, then
∫ b
a
f dx ≤

∫ b
a
g dx

•
∣∣∣∫ ba f dx∣∣∣ ≤ ∫ ba |f | dx

• Define F (x) =
∫ x
a
f(t) dt. Then F is continuous and, if f is

continuous at x0, then F ′(x0) = f(x0)

• If F ′ = f on [a, b], then
∫ b
a
f(x) dx = F (b)− F (a)
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Riemann Integrated Exercises

Exercises
1. If

∫ b
a
|f(x)| dx = 0, then f = 0.

2. Show why
∫ 1

0
χQ(x) dx does not exist.

3. Define

Sn(x) =
n+1∑
k=1

(
k − 1

k
· χ[ k−1

k , k
k+1 )(x)

)
+

n

n+ 1
χ[n+1

n+2 ,1]
(x).

3.1 How many discontinuities does Sn have?
3.2 Prove that S ′n(x) = 0 a.e.
3.3 Calculate

∫ 1

0
Sn(x) dx.

3.4 What is S∞?
3.5 Does

∫ 1

0
S∞(x) dx exist?

(See an animated graph of SN .)

http://www.mathsci.appstate.edu/~wmcb/Class/5620/RiemannStep.mov
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Riemann-Stieltjes Integral

Definition
• Let α(x) be a monotonically increasing function on [a, b]. Set

∆αi = α(xi)− α(xi−1).

• Set Mi = sup f(x) on [xi−1, xi]. The upper sum of f on [a, b]
w.r.t. α and P is

U(P, f, α) =

n∑
i=1

Mi ·∆αi

• The upper Riemann-Stieltjes integral of f over [a, b] w.r.t. α is∫̄ b

a

f(x) dα(x) = inf
P

U(P, f, α)

Exercise
1. Define the lower sum L(P, f, α) and lower integral

∫
¯
b
afdα.
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Definitely a Riemann-Stieltjes Integral

Definition
If
∫̄ b
a
f dα =

∫
¯
b
af dα, then f is Riemann-Stieltjes integrable and is written as∫ b

a
f(x) dα(x) and f ∈ R(α) on [a, b].

Proposition
A function f is Riemann-Stieltjes integrable w.r.t. α on [a, b] iff for every ε > 0
there is a partition P of [a, b] such that

U(P, f, α)− L(P, f, α) < ε.

Theorem
If f is continuous on [a, b], then f ∈ R(α) on [a, b].

Theorem
If f is bounded on [a, b]with only finitely many points of discontinuity and α is
continuous at each of f ’s discontinuities, then f ∈ R(α) on [a, b].
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Properties of Riemann-Stieltjes Integrals

Proposition
Let f and g ∈ R(α) and in β on [a, b] and c ∈ R. Then

•
∫ b
a
cf dα = c

∫ b
a
f dα and

∫ b
a
f d(cα) = c

∫ b
a
f dα

•
∫ b
a

(f + g) dα =
∫ b
a
f dα+

∫ b
a
g dα and∫ b

a
f d(α+ β) =

∫ b
a
f dα+

∫ b
a
f dβ

• f · g ∈ R(α)

• if f ≤ g, then
∫ b
a
f dα ≤

∫ b
a
g dα

•
∣∣∣∫ ba f dα∣∣∣ ≤ ∫ ba |f | dα

• Suppose that α′ ∈ R and f is bounded. Then f ∈ R(α) iff
fα′ ∈ R and ∫ b

a

f dα =

∫ b

a

f · α′ dx
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Riemann-Stieltjes Integrals and Series

Proposition
If f is continuous at c ∈ (a, b) and α(x) = r for a ≤ x < c and α(x) = s
for c < x ≤ b, then ∫ b

a

f dα = f(c) (α(c+)− α(c−))

= f(c) (s− r)

Proposition
Let α = bxc, the greatest integer function. If f is continuous on [0, b],
then ∫ b

0

f(x) dbxc =

bbc∑
k=1

f(k)
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Riemann-Stieltjes Integrated Exercises

Exercises
1.
∫ 1

0
x dx2

2.
∫ π/2

0
cos(x) d sin(x)

3.
∫ 5/2

0
x d(x− bxc)

4.
∫ 1

−1
exd|x|

5.
∫ 3/2

−3/2
exdbxc

6.
∫ 1

−1
exdbxc

7. Set H to be the Heaviside function; i.e.,

H(x) =

{
0 x ≤ 0

1 otherwise
.

Show that, if f is continuous at 0, then∫ +∞

−∞
f(x) dH(x) = f(0).
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Lebesgue Integral

We start with simple functions.

Definition
A function has finite support if it vanishes outside a finite interval.

Definition
Let φ be a measurable simple function with finite support. If

φ(x) =
n∑
i=1

aiχAi(x) is a representation of φ, then∫
φ(x) dx =

n∑
i=1

ai · µ(Ai)

Definition

If E is a measurable set, then
∫
E

φ =

∫
φ · χE .
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Integral Linearity

Proposition
If φ and ψ are measurable simple functions with finite support and

a, b ∈ R, then
∫

(aφ+ bψ) = a

∫
φ+ b

∫
ψ. Further,

if φ ≤ ψ a.e., then
∫
φ ≤

∫
ψ.

Proof (sketch).

I. Let φ =
N∑
αiχAi and ψ =

M∑
βiχBi . Then show aφ+ bψ can be

written as aφ+ bψ =
K∑

(aαki + bβkj )χEk for the properly chosen Ek.
Set A0 and B0 to be zero sets of φ and ψ. (Take
{Ek : k = 0..K} = {Aj ∩Bk : j = 0..N, k = 0..M}.)
II. Use the definition to show

∫
ψ −

∫
φ =

∫
(ψ − φ) ≥

∫
0 = 0.
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Steps to the Lebesgue Integral

Proposition
Let f be bounded on E ∈M with µ(E) <∞. Then f is measurable iff

inf
f≤ψ

∫
E

ψ = sup
f≥φ

∫
E

φ

for all simple functions φ and ψ.

Proof.
I. Suppose f is bounded by M. Define

Ek =

{
x :

k − 1

n
M < f(x) ≤ k

n
M

}
, −n ≤ k ≤ n

The Ek are measurable, disjoint, and have union E. Set

ψn(x) =
M

n

n∑
−n

k χEk (x), φn(x) =
M

n

n∑
−n

(k − 1)χEk (x)
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SLI (cont)

(proof cont).
Then φn(x) ≤ f(x) ≤ ψ(x), and so

• inf

∫
E

ψ ≤
∫
E

ψn =
M

n

n∑
k=−n

k µ(Ek)

• sup

∫
E

φ ≥
∫
E

φn =
M

n

n∑
k=−n

(k − 1)µ(Ek)

Thus 0 ≤ inf
∫
E
ψ − sup

∫
E
φ ≤ M

n µ(E). Since n is arbitrary, equality
holds.
II. Suppose that inf

∫
E
ψ = sup

∫
E
φ. Choose φn and ψn so that

φn ≤ f ≤ ψn and
∫
E

(ψn − φn) < 1
n . The functions ψ∗ = inf ψn and

φ∗ = supφn are measurable and φ∗ ≤ f ≤ ψ∗. The set
∆ = {x : φ∗(x) < ψ∗(x)} has measure 0. Thus φ∗ = ψ∗ almost
everywhere, so φ∗ = f a.e. Hence f is measurable.
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Example Steps

Example

-4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4

-4

-3

-2

-1

1

2

3

4
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Defining the Lebesgue Integral

Definition
If f is a bounded measurable function on a measurable set E with
m(E) <∞, then ∫

E

f = inf
ψ≥f

∫
E

ψ

for all simple functions ψ ≥ f.

Proposition
Let f be a bounded function defined on E = [a, b]. If f is Riemann
integrable on [a, b], then f is measurable on [a, b] and∫

E

f =

∫ b

a

f(x) dx;

the Riemann integral of f equals the Lebesgue integral of f.
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Properties of the Lebesgue Integral

Proposition
If f and g are measurable on E, a set of finite measure, then

•
∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g

• if f = g a.e., then
∫
E

f =

∫
E

g

• if f ≤ g a.e., then
∫
E

f ≤
∫
E

g

•
∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f |

• if a ≤ f ≤ b, then a · µ(E) ≤
∫
E

f ≤ b · µ(E)

• if A ∩B = ∅, then
∫
A∪B

f =

∫
A

f +

∫
B

f
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Lebesgue Integral Examples

Examples

1. Let T (x) =

{
1
q x = p

q ∈ Q
0 otherwise

}
. Then

∫
[0,1]

T =

∫ 1

0

T (x) dx.

2. Let χQ(x) =

{
1 x ∈ Q
0 otherwise

}
. Then

∫
[0,1]

χQ 6=
∫ 1

0

χQ(x)dx.

3. Define

fn(x) =
n+1∑
k=1

(
k − 1

k
· χ[ k−1

k , k
k+1 )(x)

)
+

n

n+ 1
χ[n+1

n+2 ,1]
(x).

Then
3.1 fn is a step function, hence integrable

3.2 f ′n(x) = 0 a.e.

3.3
1

4
≤
∫

[0,1]

fn =

∫ 1

0

fn(x) dx <
3

8
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Extending the Integral Definition

Definition
Let f be a nonnegative measurable function defined on a measurable
set E. Define ∫

E

f = sup
h≤f

∫
E

h

where h is a bounded measurable function with finite support.

Proposition
If f and g are nonnegative measurable functions, then

•
∫
E

c f = c

∫
E

f for c > 0

•
∫
E

f + g =

∫
E

f +

∫
E

g

• If f ≤ g a.e., then
∫
E

f ≤
∫
E

g
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General Lebesgue’s Integral

Definition
Set f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}. Then f = f+ − f−
and |f | = f+ + f−. A measurable function f is integrable over E iff both f+

and f− are integrable over E, and then
∫
E

f =

∫
E

f+ −
∫
E

f−.

Proposition
Let f and g be integrable over E and let c ∈ R. Then

1.
∫
E

cf = c

∫
E

f

2.
∫
E

f + g =

∫
E

f +

∫
E

g

3. if f ≤ g a.e., then
∫
E

f ≤
∫
E

g

4. if A, B are disjoint m’ble subsets of E,
∫
A∪B

f =

∫
A

f +

∫
B

f

MAT 5620: 150

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Convergence Theorems

Theorem (Bounded Convergence Theorem)
Let {fn : E → R} be a sequence of measurable functions converging to f
with m(E) <∞. If there is a uniform bound M for all fn, then∫

E

lim
n
fn = lim

n

∫
E

fn

Proof (sketch).
Let ε > 0.

1. fn converges “almost uniformly;” i.e., ∃A,N s.t. m(A) <
ε

4M
and, for

n > N, x ∈ E −A =⇒ |fn(x)− f(x)| ≤ ε

2m(E)
.

2.
∣∣∣∣∫
E

fn −
∫
E

f

∣∣∣∣ =

∣∣∣∣∫
E

fn − f
∣∣∣∣ ≤ ∫

E

|fn − f | =
(∫

E−A
+

∫
A

)
|fn − f |

3.
∫
E−A
|fn − f |+

∫
A

|fn|+ |f | ≤
ε

2m(E)
·m(E) + 2M · ε

4M
= ε
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Lebesgue’s Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)
Let {fn : E → R} be a sequence of measurable functions converging a.e. on
E with m(E) <∞. If there is an integrable function g on E such that |fn| ≤ g
then ∫

E

lim
n
fn = lim

n

∫
E

fn

Lemma
Under the conditions of the DCT, set gn = sup

k≥n
{fn, fn+1, . . . } and

hn = inf
k≥n
{fn, fn+1, . . . }. Then gn and hn are integrable and

lim gn = f = limhn a.e.

Proof of DCT (sketch).
• Both gn and hn are monotone and converging. Apply MCT.

• hn ≤ fn ≤ gn =⇒
∫
E
hn ≤

∫
E
fn ≤

∫
E
gn.
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Increasing the Convergence

Theorem (Fatou’s Lemma)
If {fn} is a sequence of measurable functions converging to f a.e. on E, then∫

E

lim
n
fn ≤ lim inf

n

∫
E

fn

Theorem (Monotone Convergence Theorem)
If {fn} is an increasing sequence of nonnegative measurable functions
converging to f, then ∫

lim
n
fn = lim

n

∫
fn

Corollary (Beppo Levi Theorem (cf.))
If {fn} is a sequence of nonnegative measurable functions, then∫ ∞∑

n=1

fn =
∞∑
n=1

∫
fn

http://en.wikipedia.org/wiki/Fatou
http://de.wikipedia.org/wiki/Beppo_Levi
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Sidebar: Littlewood’s Three Principles

John Edensor Littlewood said,
The extent of knowledge required is nothing so great as
sometimes supposed. There are three principles, roughly
expressible in the following terms:
• every measurable set is nearly a finite union of intervals;
• every measurable function is nearly continuous;
• every convergent sequence of measurable functions is

nearly uniformly convergent.
Most of the results of analysis are fairly intuitive applications
of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.
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Extensions of Convergence

The sequence fn converges to f . . .

Definition (Convergence Almost Everywhere)
almost everywhere if m({x : fn(x) 9 f(x)}) = 0.

Definition (Convergence Almost Uniformly)
almost uniformly on E if, for any ε > 0, there is a set A ⊂ E with m(A) < ε so
that fn converges uniformly on E −A.

Definition (Convergence in Measure)
in measure if, for any ε > 0, lim

n→∞
m ({x : |fn(x)− f(x)| ≥ ε})=0.

Definition (Convergence in Mean (of order p > 1))

in mean if lim
n→∞

‖fn − f‖p = lim
n→∞

[∫
E

|f − fn|p
]1/p

= 0

http://en.wikipedia.org/wiki/John_Edensor_Littlewood
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Integrated Exercises

Exercises
1. Prove: If f is integrable on E, then |f | is integrable on E.

2. Prove: If f is integrable over E, then
∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f |.

3. True or False: If |f | is integrable over E, then f is integrable over
E.

4. Let f be integrable over E. For any ε > 0, there is a simple

(resp. step) function φ (resp. ψ) such that
∫
E

|f − φ| < ε.

5. For n = k + 2ν , 0 ≤ k < 2ν , define fn = χ[k2−ν ,(k+1)2−ν ].

5.1 Show that fn does not converge for any x ∈ [0, 1].
5.2 Show that fn does not converge a.e. on [0, 1].
5.3 Show that fn does not converge almost uniformly on [0, 1].
5.4 Show that fn → 0 in measure.
5.5 Show that fn → 0 in mean (of order 2).
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