Vector Calculus

Vector Space Axioms

A set $\mathcal{V} = \{\vec{v}\}$ with addition + and scalar multiplication \cdot with scalars from a field F is a vector space over F when

- 1. $\langle \mathcal{V}, + \rangle$ is an Abelian group.
- 2. scalar multiplication distributes over vector addition
 - scalar addition distributes over scalar multiplication
 - multiplication of scalars 'associates' with scalar multiplication

Recall:

- The norm (magnitude) of a vector \vec{u} is $\|\vec{u}\| = \sqrt{\sum u_i^2}$
- The direction vector of \vec{u} is $(1/||u||) \cdot \vec{u}$

Definition (Dot Product in \mathbb{R}^n over \mathbb{R}) $\vec{u} \cdot \vec{v} = \sum u_i \cdot v_i = \|\vec{u}\| \|\vec{v}\| \cos(\angle \overline{uv})$

Dot Product

Multiple Integration

Cross Product

Definition

• Let \vec{u} and $\vec{v} \in \mathbb{R}^3$; set e_1, e_2, e_3 to be std basis vectors. Then

	e_1	e_2	e_3
$\vec{u} \times \vec{v} =$	u_1	u_2	u_3
	v_1	v_2	v_3

• Let $\vec{u_1}$ to $\vec{u_{n-1}} \in \mathbb{R}^n$, $n \ge 3$; let $\{e_n\} = \{$ std basis vectors $\}$. Then

	$ e_1$	e_2	• • •	e_n
$(\rightarrow \rightarrow)$	$u_{1,1}$	$u_{1,2}$	•••	$u_{1,n}$
$\times (u_1, \dots, u_{n-1}) =$:	:	·	:
	$ u_{n-1,1} $	$u_{n-1,2}$		$u_{n-1,n}$

Parametric Equations

Definition (Parametrization)

Suppose $f: D \to \mathbb{R}, g: D \to \mathbb{R}$, and $h: D \to \mathbb{R}$. Then

 $\gamma(t) = (f(t), g(t), h(t))$

for $t \in D$ is a *curve (spacecurve)* in \mathbb{R}^3 . The fcns f, g, and h are *parametric equations* for γ , or a *parametrization of* γ .

Examples

1. The line segment *L* from \vec{u} to \vec{w} can be parametrized as

$$L(t) = \vec{u} + (\vec{w} - \vec{u}) \cdot t, \qquad t \in [0, 1]$$

2. Γ given by f:=t-> $\langle \cos(t), \sin(t) \ast \cos(t), t \ast (1-t) \rangle$ for $t \in [0, 3\pi]$. animate(spacecurve, [f(t),t=0..3*Pi*k,

thickness=2],k=0..1,axes=frame,color=black,frames=30)

MAT 5620: 5

 Vector Calculus
 Functions of Two Variables
 Multiple Integration
 Intro to Lebesgue Measure

Continuous Spacecurves

Definition

Let $\mathcal{I} = [a, b] \subseteq \mathbb{R}$. A curve γ is

- continuous (on I) if γ can be parametrized with components that are continuous on I.
- *smooth (on* \mathcal{I}) if γ 's parametric components are continuously differentiable on \mathcal{I} , and $f'^2 + {g'}^2 + {h'}^2 > 0$ for all $t \in (a, b)$.
- *piecewise smooth (on I)* if [a, b] can be partitioned into a finite number of subintervals on which γ is smooth.

Note: Smooth \equiv a particle moving parametrically along the curve doesn't change direction abruptly, stop mid-curve, or reverse.

Theorem

If $\gamma(t) = (f(t), g(t))$ is smooth on [a, b], then tangent slope at $P_0 = (x, y)$ is given by $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ when $\frac{dx}{dt} \neq 0$.

A Smooth Closed Curve

Functions of Two Variables Intro to Lebesgue Measure Vector Calculus Multiple Integration Lines in \mathbb{R}^3 Theorem (The Line Forms Here Thm) A line ℓ passing through $P_0 = (x_0, y_0, z_0)$, parallel to $\vec{u} = (a, b, c) \neq \vec{0}$ has $\ell(t) = P_0 + t \, \vec{u}, \, t \in \mathbb{R}$ vector form: $\ell(t) = (x_0 + at, y_0 + bt, z_0 + ct), t \in \mathbb{R}$ parametric form: $\frac{x(t) - x_0}{a} = \frac{y(t) - y_0}{b} = \frac{z(t) - z_0}{a}$ symmetric form: Consider... Let $P_0 = (1, 2, 4)$ and direction $\vec{u} = (1, 2, -1)$. **1.** $\ell_1(t) = (1+t, 2+2t, 4-t)$ $\vec{u} = (1, 2, -1)$ **2.** $\ell_2(s) = \left(1 + \frac{1}{\sqrt{6}}s, \ 2 + \frac{2}{\sqrt{6}}s, \ 4 - \frac{1}{\sqrt{6}}s\right)$ $\vec{w} = \frac{1}{\sqrt{6}}(1, 2, -1)$

Multiple Integration

Planes in \mathbb{R}^3

Vector Calc	culus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure			
	Quadric Surfaces						
5	Standard	Forms of Quadric Su	rfaces				
		sphere:	$x^2 + y^2 + z^2 = r^2$				
	_	ellipsoid:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$				
		elliptic paraboloid:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$				
	-	hyperbolic paraboloid:	$\frac{x^2}{a^2} - \frac{y^2}{b^2} + z = 0$				
	_	elliptic cone:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z^2 = 0$				
		hyperboloid of 1 sheet:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = +1$				
		hyperboloid of 2 sheets:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$				

 Vector Calculus
 Functions of Two Variables
 Multiple Integration
 Intro to Lebesgue Measure

 Vector-Valued Functions

Notation

The standard basis vectors in \mathbb{R}^3 are

 $\langle 1, 0, 0 \rangle = e_1 = \mathbf{i}, \qquad \langle 0, 1, 0 \rangle = e_2 = \mathbf{j}, \qquad \langle 0, 0, 1 \rangle = e_3 = \mathbf{k}$

If $f, g, h: D \to \mathbb{R}$ are real functions, then $\vec{r}: D \to \mathbb{R}^3$ given by

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

is a vector-valued function with components f, g, and h.

Definition

Let $\vec{r}: D \to \mathbb{R}^3$ have components f, g, and h, and let t_0 be an accumulation point of D. Then

$$\lim_{t \to t_0} \vec{r}(t) = \vec{L} = L_f \mathbf{i} + L_g \mathbf{j} + L_h \mathbf{k}$$

iff $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ s.t. $(\forall t \in D)$ if $0 < |t - t_0| < \delta$, then $||\vec{r}(t) - \vec{L}|| < \epsilon$.

 L_h

Vector-Valued Function Limits

Theorem (Limits Work)

$$\lim_{t \to t_0} \vec{r}(t) = L_f \mathbf{i} + L_g \mathbf{j} + L_h \mathbf{k}$$

$$\iff$$

$$\lim_{t \to t_0} f(t) = L_f \wedge \lim_{t \to t_0} g(t) = L_g \wedge \lim_{t \to t_0} h(t) =$$

Proof (key inequality).

$$|a| \underset{(\Leftarrow)}{\leq} \sqrt{a^2 + b^2 + c^2} = \left\| (a, b, c) \right\| \underset{(\Rightarrow)}{\leq} |a| + |b| + |c|$$

MAT 5620: 13

$$\begin{array}{c} \mbox{(2002) (20$$

Continuity of Vector-Valued Functions

Definition (Continuity)

A function $\vec{r}(t)$ is *continuous* at $t_0 \in D$ iff $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ s.t. $(\forall t \in D)$ if $|t - t_0| < \delta$, then $||\vec{r}(t) - \vec{r}(t_0)|| < \epsilon$.

Proposition

1. A function $\vec{r}(t)$ is continuous at an accumulation point $t_0 \in D$ iff

$$\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$$

- 2. A function $\vec{r}(t)$ is uniformly continuous on $E \subseteq D$ iff $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ s.t. $(\forall t_1, t_2 \in E)$ if $|t_1 - t_2| < \delta$, then $||\vec{r}(t_1) - \vec{r}(t_2)|| < \epsilon$.
- 3. If a function $\vec{r}(t)$ is continuous on a closed and bounded set *E*, then \vec{r} is uniformly continuous on *E*.

MAT 5620: 15

(2000) (

Algebra of Vector-Valued Derivatives

Theorem (Algebra of Derivatives)

Suppose $\vec{u}, \vec{w}: D \to \mathbb{R}^n$ & $k: D \to \mathbb{R}$ are all differentiable, and $c \in \mathbb{R}$. Then

$$[\vec{u} \pm \vec{w}]' = [\vec{u}'] \pm [\vec{w}'] \tag{6}$$

$$c\,\vec{u}\,]' = c\,[\vec{u}\,'] \tag{7}$$

$$[k\,\vec{u}\,]' = [k']\,\,\vec{u} + k\,\,[\vec{u}\,'] \tag{8}$$

$$\left[\vec{u}\cdot\vec{w}\right]' = \left[\vec{u}\,'\right]\cdot\vec{w} + \vec{u}\cdot\left[\vec{w}\,'\right] \tag{9}$$

$$\left[\vec{u} \times \vec{w}\right]' = \left[\vec{u}'\right] \times \vec{w} + \vec{u} \times \left[\vec{w}'\right]$$
(10)

$$\|\vec{u}\|' = \frac{\vec{u} \cdot [\vec{u}\,']}{\|\vec{u}\|} \tag{11}$$

$$\left[ec{u}\circ k
ight]'=\left[ec{u}\,'\circ k
ight]*k'$$

MAT 5620: 17

(12)

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure **Derivative Props Properties** Suppose $\vec{r}(t)$ is a twice differentiable vector function. **1.** $\vec{V}(t) = \vec{r}'(t)$ is • the tangent vector of \vec{r} • the velocity vector of \vec{r} and $S(t) = \|\vec{r}'(t)\|$ gives the *speed* of $\vec{r}(t)$ **2.** $\vec{A}(t) = \vec{V}'(t) = \vec{r}''(t)$ is • the acceleration vector of \vec{r} Example Find the velocity & acceleration and the speed for the function 1. $\vec{r}(t) = \langle 2\cos(t), 3\sin(t), z_0 \rangle$. 2. $\vec{\rho}(t) = \langle \cos(t) \cdot (1 + \cos(t)), 2\sin(t) \cdot (1 + t), t \rangle$.¹

1spacecurve(f(t),t=0..6*Pi,numpoints=101,thickness=3,axes=normal)

Example 9.6.9

Example (9.6.9, pg 410)

Consider $\vec{u}, \vec{v}, \vec{w} : \mathbb{R} \to \mathbb{R}^2$ defined by

$$\vec{u} = \langle t, t^2 \rangle, \vec{v} = \langle t^3, t^6 \rangle, \text{ and } \vec{w} = \begin{cases} \langle t, t^2 \rangle & \text{if } t \leq 0 \\ \langle t^3, t^6 \rangle & \text{if } t > 0 \end{cases}$$

All 3 functions are continuous, all trace the parabola $y = x^2$, and all are $\vec{0}$ at t = 0.

- 1. \vec{u} is differentiable at t = 0 with tangent vector $\vec{u}'(0) = \langle 1, 0 \rangle$ and tangent line y = 0.
- 2. \vec{v} is differentiable at t = 0 with tangent vector $\vec{v}'(0) = \langle 0, 0 \rangle$, but has *no* tangent line $\vec{0}$.
- 3. \vec{w} is *not* differentiable at t = 0 and has no tangent line at $\vec{0}$.

See Maple demo

/ector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure
	Cir	cles	
Proposi	tion		
$\frac{\text{Let } \vec{r} \text{ be a}}{\vec{r}(t) \cdot \vec{r}'(t)}$	a differentiable vector fun) = 0; i.e. \vec{r} and \vec{r}' are or	oction of t . Then $\ \vec{r}(t)\ $ thogonal.	is constant iff
Proof.			
$\ \vec{r}(t)\ $	$ t $ is constant $\iff \vec{r}(t)$	$\cdot \vec{r}(t) = c \iff \vec{r}(t) \cdot \vec{r}(t)$	$\vec{r}'(t) = 0$
Definitio	n		
Unit tang	ent vector: $\vec{T}(t) = \vec{r}'(t)/$	$\ \vec{r}'(t)\ $	
Unit norm	nal vector: $\vec{N}(t) = \vec{T}'(t)/$	$\ \vec{T'}(t)\ $	
$ec{V}=ec{r}'$ at $ec{A}_{ec{N}}=vec{T}$	nd $v = \ ec{V}\ .$ Then $ec{A} = ec{V}$	$\vec{T}' = v \vec{T}' + v' \vec{T}$. Since n orthogonal decomp	$\vec{T'} \perp \vec{T}$, then of \vec{A}

tor Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Meas
	\mathbf{b}^{e}	Cræft	
Ductost			
Project			
Using	$ec{r}^{\prime\prime}=ec{A}$ =	$= v \vec{T'} + v' \vec{T}$	(13)
	$ec{A}$ =	$=ec{A}_{ec{N}}+ec{A}_{ec{T}}$	(14)
1. Com	pute $ec{A}\cdotec{T}$?		
2. Wha	t vector is $(\vec{A}\cdot\vec{T})\vec{T}$?		
3. Com	pute $ec{A} - \left(ec{A} \cdot ec{T} ight)ec{T}$?		
4. Appl com	y this idea to $ec{r}(t) = \langle \cos ho$ conents?	$(t), \sin(t) angle$. What are $ ilde{A}$	l's orthognal
			MAT 5

Int

Definition

$$\int_{a}^{b} \vec{r}(t) dt = \left[\int_{a}^{b} f(t) dt \right] \mathbf{i} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{j} + \left[\int_{a}^{b} h(t) dt \right] \mathbf{k}$$

off the integrals exist. I.e., $\int_a^b \langle f_i \rangle(t) dt = \left\langle \int_a^b f_i(t) dt \right\rangle$.

Theorem (FToC)

Suppose $\vec{r}(t)$ is integrable on [a, b] and $\vec{R}(t)$ is an antiderivative (or primitive) for \vec{r} . Then $\int_{a}^{b} \vec{r}(t) dt = \left. \vec{R}(t) \right|_{a}^{b} = \vec{R}(b) - \vec{R}(a)$

Theorem

Suppose $\vec{r}(t)$ is integrable on [a, b]. Then

$$\int_{a}^{b} \vec{r}(t) dt \bigg\| \leq \int_{a}^{b} \|\vec{r}(t)\| dt$$

Arclength

Definition (Arclength)

Let $\gamma(t) = \vec{r}(t)$ be a smooth curve on [a, b]. The length of γ on [a, b] is

 $L(\gamma) = \sup \{L_Q \mid Q \text{ partitions } [a, b]\}$

where $L_Q = \sum_k \left\| \gamma(t_k) - \gamma(t_{k-1}) \right\|$ for $t_k \in Q$.

Proposition

Let $\gamma(t) = \vec{r}(t)$ be a smooth curve on [a, b]. The length of γ on [a, b] is $L(\gamma) = \lim_{|Q| \to 0} L_Q$ where |Q| is the norm of the partition.

Theorem (Useful Arclength Theorem)

Let $\gamma(t) = \vec{r}(t)$ be a smooth curve on [a, b]. The length of γ on [a, b] is

$$L(\gamma) = \int_{a}^{b} \sqrt{\sum_{k} (f'_{k})^{2}} dt = \int_{a}^{b} \left\| \vec{r}'(t) \right\| dt$$

Rectified

Definition (Recifiable Curve)

A curve γ is *rectifiable* iff $L(\gamma)$ is finite.

Examples (Curves²)

I. Let
$$\gamma(t) = \langle \cos(\pi t), \sin(\pi t), \sqrt{3}\pi t \rangle$$
 on $[0, 1]$.
1. $L(\gamma) = \int_{-1}^{1} \|\gamma'(t)\| dt$

2. =
$$\int_0^1 \left\| \pi \langle -\sin(\pi t), \cos(\pi t), \sqrt{3} \rangle \right\| dt = 2\pi$$

II. Let
$$\psi(t) = \langle \tan(t), 1 - \sin(t), \cos(t) \rangle$$
 on $[0, \pi/2]$.
1. $L(\psi) = \int_0^1 \|\psi'(t)\| dt$
2. $= \int_0^1 \|\langle \sec^2(t), -\cos(t), -\sin(t) \rangle\| dt = \infty$

² Maple worksheet

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure			
	Interlude					
Theor	em (Most Useful Nor	m-Integral Estimate	e)			
Let $\vec{r}(t)$	be Riemann integrable on [$[a,b]$. Then $\ ec{r}(t)\ $ is integ	rable and			
	$\left\ \int_{a}^{b} \vec{r}(t) dt\right\ \leq \int_{a}^{b} \ \vec{r}(t)\ dt$					
Proof	Proof.					
I. $\ \vec{r}(t)\ $	is integrable: 🗸					
$II.\;(\mathbb{R}^2).$	$\left\ \int_{a}^{b} \vec{r}(t) dt\right\ = \sqrt{\left(\int_{a}^{b} f\right)^{2}}$	$a^{2} + \left(\int_{a}^{b} g\right)^{2}$				
	$\leq \sqrt{\int_a^b (f^2)}$ -	$+\int_{a}^{b}(g^{2}) = \sqrt{\int_{a}^{b}(f^{2}+g^{2})}$	^{,2})			
	$\leq \int_{a}^{b} \sqrt{f^2 + f^2}$	$\overline{g^2} = \int_a^b \ \vec{r}(t)\ dt.$				

Reparametrize

Definition

Two parametrizations γ_1 on [a, b] and γ_2 on [c, d] of a curve are *equivalent* iff there is a continuously differentiable bijection $u:[c, d] \rightarrow [a, b]$ such that u(c) = a, u(d) = b, and $\gamma_2 = \gamma_1 \circ u$.

Theorem

Suppose γ_1 and γ_2 are equivalent smooth parametrizations of a curve. Then $L(\gamma_1) = L(\gamma_2)$.

Proof.

Let u be the equivalence bijection for γ_1 and γ_2 . Then

$$L(\gamma_2) = \int_c^d \|\gamma'_2(t)\| dt = \int_c^d \|\gamma'_1(u(t)) \cdot u'(t)\| dt$$

= $\int_c^d \|\gamma'_1(u(t))\| \cdot u'(t) dt = \int_a^b \|\gamma_1(s)\| ds = L(\gamma_1)$

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

MAT 5620: 27

Parametrization by Arclength

Definition (Arclength Parameter)

Set $\ell(t) = \int_a^t \|\vec{r}'(t)\| dt$. Then ℓ is continuous, differentiable, a bijection, and increasing \Rightarrow it has an inverse $\ell^{-1} : [0, L(\gamma)] \to [a, b]$. So $\gamma \circ \ell^{-1} : [0, L(\gamma)] \to \mathbb{R}^n$ is the *arclength parametrization* of γ .

Example

Let $\vec{r}(t) = \langle \cos(t), \sin(t), t/3 \rangle$ on $[-4\pi, 4\pi]$.

- 1. Whence $\|\vec{r}'(t)\| = \|\langle -\sin(t), \cos(t), 1/3 \rangle\| = \sqrt{10}/3.$
- 2. Hence $\ell(t) = \int_{-4\pi}^{t} \sqrt{10}/3 \, dt = \sqrt{10}/3 \cdot (t+4\pi).$
- 3. Fortuitously, ℓ is algebraically invertible (*usually not true!*) and $\ell^{-1}(s) = (3/\sqrt{10})s 4\pi$.
- 4. Whereupon the arc length parametrized form of γ is

$$\gamma(s) = \left\langle \cos\left(\frac{3}{\sqrt{10}} s\right), \sin\left(\frac{3}{\sqrt{10}} s\right), \frac{1}{\sqrt{10}} s - \frac{4}{3} \pi \right\rangle \quad \text{on} \left[0, \frac{8\sqrt{10}}{3} \pi\right]$$

What's the Problem?

Interlude: Orthogonality

Proposition

Suppose that $f(x), g(x) : [a, b] \to \mathbb{R}$ are (piecewise) continuous functions. Then

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x) \, dx$$

is an inner product on the vector space of (piecewise) continuous functions on [a, b]

Definition (Orthogonal Vectors)

Suppose that \vec{u} and \vec{w} are vectors in a vector space V over the field F. Then \vec{u} is orthogonal to \vec{w} iff $\langle \vec{u}, \vec{w} \rangle = 0$.

Interlude: Expansions in Legendre Polynomials

Proposition (Orthonormalized Legendre Polynomials) Let $p_n(x) = \sqrt{\frac{2n+1}{2}} \cdot P_n(x)$. Then $\langle p_n, p_m \rangle = \delta_{m,n}$.

Theorem

Let *f* be integrable on
$$[-1, 1]$$
, and set $a_n = \langle f, p_n \rangle$. Then

$$f_n(x) = \sum_{k=0}^n a_n p_n(x) \xrightarrow[n]{} f(x)$$

Example

For $f(x) = \sin(\pi x)$ on [0, a], we have $a := \left[0, \frac{\sqrt{6}}{\pi}, 0, \frac{\sqrt{14}}{\pi^3} \left(\pi^2 - 15\right), 0, \frac{\sqrt{22}}{\pi^5} \left(\pi^4 - 105\pi^2 + 945\right), 0, \dots\right]$ $\sin_3(x) = \frac{\sqrt{6}}{\pi} p_1(x) + \frac{\sqrt{14}}{\pi^3} \left(\pi^2 - 15\right) p_3(x) = -\frac{15}{2} \frac{\pi^2 - 21}{\pi^3} x + \frac{35}{2} \frac{\pi^2 - 15}{\pi^3} x^3$

Interlude: Legendre Expansion Graph

Vector	Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Me	easure
		Basic Top	ology of \mathbb{R}^n		
	Definition (Total Recall:)			
	Open ball:	$B(\vec{c};r) = \{\vec{x} \mid \vec{x} - \vec{c} $	$< r \} \subseteq \mathbb{R}^n$		
	Punct'd ball:	$B'(\vec{c};r) = \{\vec{x} \mid 0 < \ \vec{x}\ $	$-\vec{c} \ < r \} \subset \mathbb{R}^n;$	NB: $\vec{c} \notin B'(\vec{c};r)$	
	Interior point:	$\vec{a} \in \operatorname{int}(S)$ iff $\exists \varepsilon \! > \! 0$ s	uch that $B(ec{a};arepsilon)\subset S$		
	Open set:	S is open iff $S = int(S)$	S)		
	Accum point:	\vec{a} in an <i>accumulation</i>	pt of S iff $\forall \varepsilon > 0 \; [B'(\vec{a};$	$\varepsilon) \cap S] \neq \emptyset$	
	Derived set:	$S' = \{ all \ accumulatio$	n pts of S }		
	Closed set:	$S \text{ is } \textit{closed} \text{ iff } S' \subseteq S$			
	Closure:	The closure of S is \overline{S}	$= S \cup S'$		
	Boundary pt:	\vec{b} is a <i>boundary pt</i> of <i>S</i> and <i>S</i> complement for	S iff $B(\vec{b};\varepsilon)$ contains portains r all $\varepsilon\!>\!0$	bints both of S	
	Boundary:	$\partial S = \{ all boundary p \}$	ts of S }		
	Isolated pt:	\vec{a} in an <i>isolated pt</i> of S	S iff $\exists \varepsilon > 0 \ [B'(\vec{a};\varepsilon) \cap$	$S] = \emptyset$	

Proper Stichens

Proposition (Open Sets)

1. If \mathcal{I} is an indexing set for a family of open sets $\{O_i\}$, then the set $\mathcal{O} = \bigcup_{i \in \mathcal{I}} O_i$ is open. (Arbitrary unions of open sets are open.)

2. If $\{O_i\}_{i=1}^n$ is a finite family of open sets, then $\mathcal{O} = \bigcap_{i=1}^n O_i$ is open. (Finite intersections of open sets are open.)

Examples

1. Let $O_x = (-x, x)$ for $x \in (0, 1) = \mathcal{I}$. Then

$$\bigcup_{i\in\mathcal{I}}O_i=?\qquad\qquad\bigcap_{i\in\mathcal{I}}O_i=?$$

2. Let $P_i = \left(-1 - \frac{1}{i}, 1 - \frac{1}{i}\right)$ for i = 1..n. Then $\bigcap_{i=1}^{n} P_i = ? \qquad \qquad \bigcup_{i=1}^{n} P_i = ?$

MAT 5620: 37

Proper Themes

tor Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Meas
	C	CIT	
Proof.	(Cantor Intersection	Theorem).	
I. If F is	finite for some, then done	Э.	
II. Each	F_n is infinite. Define $S =$	$\bigcap_{k=1}^{\infty} F_k.$	
1. <i>S</i> is	s closed.		
2 . 2.a	Define the sequence $A = \{$ for each k .	$\{a_k\}$ by choosing	distinct points $a_k \in F_k$ Uses: F_k 's are infinite.
2.t	Since F_1 is bounded, the set	equence forms a	bounded, infinite set.
2.0	Therefore A has an accum	ulation pt a .	Bolzano-Weierstrass!
2.c	Let $r > 0$ and set $B = B'(a)$ contains ∞ many pts of A . contain ∞ many pts of F_k .	$a; r)$. Since a is an As the F_k 's are n Whence a is an a	acc pt of A , then B ested, B also must acc pt of F_k .
2.e	F_k is closed, so $a \in F_k$.		
2.	The F_k are nested, so $a \in$	$\bigcap_k F_k$; i.e., the int	tersection is nonempty.
_			MAT 56

Sample Intersections

Examples (CIT)

1. Define: $F_0 = [0, 1]; F_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] = F_0 - (\frac{1}{3}, \frac{2}{3});$ $F_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1];$ &c. Hence $F_n = \bigcup_{k=0}^{\lfloor 3^n/2 \rfloor} \left[\frac{2k}{3^n}, \frac{2k+1}{3^n} \right]_{J(k,n)}$ Let $C = \bigcap_n F_n$. Whence $CIT \implies C$ is nonempty and closed. 2. Let $H_n = [n, \infty)$. Then H_n is a sequence of nested, closed sets. But $\bigcap_n H_n = ?$ 3. Set $J_n = (-\frac{n+1}{n^2}, \frac{n+1}{n^2})$. Then J_n is a sequence of bounded, nested sets. But $\bigcap_n J_n = ?$

Functions of Two Variables

Intro to Lebesgue Measure

Limiting Examples

Multiple Integration

Theorem (The Algebra of Limits) Let $f, g: D \to \mathbb{R}$ and $\vec{a} \in D'$. Suppose $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = L_f$ and $\lim_{\vec{x}\to\vec{a}} g(\vec{x}) = L_g$. Then 1. $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) \pm g(\vec{x}) = L_f \pm L_g$ 2. $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) \cdot g(\vec{x}) = L_f \cdot L_g$ 3. $\lim_{\vec{x}\to\vec{a}} \frac{f(\vec{x})}{g(\vec{x})} = \frac{L_f}{L_g}$ as long as $L_g \neq 0$ 4. $\lim_{\vec{x}\to\vec{a}} |f(\vec{x})| = |L_f|$ 5. if $f(\vec{x}) \leq g(\vec{x})$ on some $B'(\vec{a}; r)$, then $L_f \leq L_g$

2. $(D \subseteq \mathbb{R}^2)$ Let $\vec{a}_n \to \vec{a}$. Since $(fg)(\vec{a}_n) = f(\vec{a}_n) g(\vec{a}_n)$, and f & g are continuous at \vec{a} , we have $f(\vec{a}_n) g(\vec{a}_n) \to f(\vec{a}) g(\vec{a}) = (fg)(\vec{a})$. Thus $(fg)(\vec{a}_n) \to (fg)(\vec{a})$ for any sequence $\vec{a}_n \to \vec{a}$; hence, fg is continuous at \vec{a} .

(Note: Thm 10.2.9 has problems: g & f can't be composed as $\operatorname{range}(f) \subset \mathbb{R}^1$, but $\operatorname{dom}(g) \subset \mathbb{R}^2$. So $\operatorname{range}(f) \not\subseteq \operatorname{dom}(g)$.

MAT 5620: 49

Continuously Reverted

Proposition

 $f: \mathbb{R}^n \to \mathbb{R}$ is continuous iff

- the preimage of any open set (in \mathbb{R}^1) is open (in \mathbb{R}^n).
- the preimage of any closed set (in \mathbb{R}^1) is closed (in \mathbb{R}^n).

Proof.

- $\begin{array}{l} (\Rightarrow) \mbox{ Assume } f \mbox{ is cont and } S \mbox{ is open in } \mathbb{R}^1. \\ \mbox{ Let } \vec{a} \in f^{-1}(S); \mbox{ i.e. } f(\vec{a}) \in S. \mbox{ For some } r > 0, \mbox{ then } B(f(a); r) \subseteq S. \\ \mbox{ Whence there is a } \delta > 0, \mbox{ s.t. } f(B(\vec{a}; \delta)) \subseteq B(f(a); r) \subseteq S. \\ \mbox{ Hence } B(\vec{a}; \delta) \subseteq f^{-1}(S). \end{array}$
- $\begin{array}{l} (\Leftarrow) \ \, \text{Assume } f^{-1}(S) \text{ is open whenever } S \text{ is open.} \\ \quad \text{Let } \vec{a} \in f^{-1}(S) \text{ and } \varepsilon > 0. \ \, \text{Thence } f^{-1}(B(f(\vec{a};\varepsilon)) \text{ is open.} \\ \quad \text{Thus there is a } \delta > 0 \text{ s.t. } B(\vec{a};\delta) \subseteq f^{-1}(B(f(\vec{a};\varepsilon)). \\ \quad \text{Apply } f \text{ to have } f(B(\vec{a};\delta)) \subseteq B(f(\vec{a};\varepsilon)). \end{array}$

Uniform

Definition (Uniform Continuity)

A function $f: D \to \mathbb{R}$ is *uniformly continuous on* D iff for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. for all $\vec{x}_1, \vec{x}_2 \in D$, if $||\vec{x}_1 - \vec{x}_2|| < \delta$, then $|f(\vec{x}_1) - f(\vec{x}_2)| < \varepsilon$.

Theorem

If f is continuous on D, and D is closed & bounded (compact), then

- 1. *f* is bounded,
- 2. f attains extreme values (max and min),
- **3**. *f* is uniformly continuous on *D*.

Proof (Homework).

- 1. Hint: Assume not, then look at $f^{-1}(a_n)$ where $a_n \to \infty$.
- 2. Bolzano-Weierstrass in action.
- 3. Hint: Assume not. Create sequences \vec{x}_n , \vec{y}_n that converge to \vec{a} , but have $|f(\vec{x}_n) f(\vec{y}_n)| > \varepsilon$. Cont gives a contradiction.

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

MAT 5620: 51

Connecting to Rudolph Otto

Theorem

Let $f: D \to \mathbb{R}$ be continuous and let *S* be a connected subset of *D*. Then f(S) is connected. (A connected set in \mathbb{R} is an interval.)

Proof.

Suppose $f(S) = A \cup B$ with A & B nonempty, separated sets in \mathbb{R} . Define $G = S \cap f^{-1}(A)$ and $H = S \cap f^{-1}(B)$.

- 1. $S = G \cup H$ since $f: S \xrightarrow{\text{onto}} f(S)$.
- 2. Let $\vec{y} \in A$. $(A \neq \emptyset)$. $\exists \vec{x} \in S$ s.t. $f(\vec{x}) = \vec{y}$. Thus $\vec{x} \in G \implies G \neq \emptyset$. Similarly, $H \neq \emptyset$.
- 3. Let $\vec{p} \in \overline{G} \cap H$. If $\vec{p} \in G$, then $\vec{p} \in G \cap H$. Then $\vec{p} \in f^{-1}(A \cap B)$; i.e., $f(\vec{p}) \in A \cap B = \emptyset$. Thus $\vec{p} \notin G$, whence $\vec{p} \in G'$ and $f(\vec{p}) \in B$. Since $\overline{A} \cap B = \emptyset$ and $\vec{p} \in B$, $\exists \varepsilon > 0$ s.t. $B(f(\vec{p}); \varepsilon) \cap A = \emptyset$. Since f is cont, $\exists \delta > 0$ s.t. $f(B(\vec{p}; \delta)) \subset B(f(\vec{p}); \varepsilon)$. Then $B(\vec{p}; \delta) \cap G$ is empty contrary to $\vec{p} \in G'$. Hence $\overline{G} \cap H = \emptyset$. Similarly $G \cap \overline{H} = \emptyset$.
- 4. Whereupon S is separated by G and H. oops $\rightarrow \leftarrow$

Fun with Functions

Problem (Functions)

f

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Let A and B be subsets of the domain and range of f, respectively. Then

 $f(A) = \{y \in \mathbb{R} \mid f(a) = y \text{ for some } a \in A\} \subseteq \operatorname{range}(f)$

$$^{-1}(B) = \{x \in \mathbb{R}^n \mid f(x) = b \text{ for some } b \in B\} \subseteq \operatorname{dom}(f)$$

Give an example justifying your answer.

- 1. **T** or **F**: $A \subseteq f^{-1}(f(A))$
- $f^{-1}(f(A)) \subset A$
- 2. **T** or **F**: $A = f^{-1}(f(A))$ 5. **T** or **F**: $B = f(f^{-1}(B))$

4. T or **F**: $B \subseteq f(f^{-1}(B))$

3. T or F: $A \supseteq f^{-1}(f(A))$ or **6.** T or F: $B \supseteq f(f^{-1}(B))$ or $f(f^{-1}(B)) \subseteq B$

MAT 5620: 53

Functions of Two Variables Multiple Integration Intro to Lebesgue Measure Rudolph Otto S von L **Definition (Lipschitz Condition)** If there is a constant L s.t. $|f(\vec{x}_1) - f(\vec{x}_2)| < L \|\vec{x}_1 - \vec{x}_1\|$ for all $f\vec{x}_1, \vec{x}_2 \in D$, then f satisfies a *Lipschitz condition on* D (also called a "Lipschitz 1" condition). Proposition A function that is Lipschitz on D is uniformly continuous on D. Proof. Suppose f is Lipschitz with constant L. Let $\varepsilon > 0$. Choose $0 < \delta < \varepsilon/L$. For any vectors \vec{x}_1 and \vec{x}_2 in dom(f)with $\|\vec{x}_1 - \vec{x}_2\| < \delta$, we have $|f(\vec{x}_1) - f(\vec{x}_2)| \le L \|\vec{x}_1 - \vec{x}_2\| \le L\delta < \varepsilon$

Multiple Integration

Exercise

Problem (#14, pg 447) Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(r, \theta) = \begin{cases} \frac{1}{2} \sin(2\theta) & r \neq 0 \\ 0 & r = 0 \end{cases}$ 1. Is f continuous in polar coordinates? Let $\theta = \pm \pi/4$, resp., and $r \to 0$. Then $\lim_{(r,\pi/4)\to \vec{0}} f(r, \theta) = 1/2$, but $\lim_{(r,-\pi/4)\to \vec{0}} f(r, \theta) = -1/2$. Thus, f is not continuous at $\vec{0}$ (polar). 2. Write f in rectangular coordinates. $\frac{1}{2} \sin(2\theta) = \cos(\theta) \sin(\theta) = \frac{x}{\sqrt{x^2 + y^2}} \cdot \frac{y}{\sqrt{x^2 + y^2}} = \frac{xy}{x^2 + y^2}$ 3. Is f in rectangular coordinates continuous? Let $(x, y) \to \vec{0}$ as (t, t) and as (t, -t). Then $f \to \pm 1/2$ as $t \to 0$. Hence f is not continuous at $\vec{0}$.

Challenge Problem

Partial Derivatives

Definition (Partial Derivatives)

Let *D* be an open set in \mathbb{R}^2 , $(a, b) \in D$, and $f: D \to \mathbb{R}$. Then

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h},$$
$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

when the limits are finite.

Example (Woof!)

Let
$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
 and $f(\vec{0}) = 0$. Then
 $f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - 0}{h} = 0$
and
 $f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - 0}{h} = 0$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - 0}{h} = 0$$

More Partial Derivatives

Examples

2. g(x, y) =

1.
$$h(x,y) = x^2/\sqrt{y}$$
. Then
 $h_x(x,y) = 2x y^{-1/2}$
 $h_y(x,y) = -\frac{1}{2}x^2y^{-3/2}$
2. $g(x,y) = -\cos(x+y^2)$. Then

$$g_x(x,y) = \sin(x+y^2)$$
$$g_y(x,y) = 2y\sin(x+y^2)$$

3.
$$f(x,y) = x^2 \sin(y) - xe^{-xy}$$
. Then
 $f_x(x,y) = 2x \sin(y) + (xy-1)e^{-xy}$
 $f_y(x,y) = x^2 (\cos(y) + e^{-xy})$

MAT 5620: 61

Intro to Lebesgue Measure Functions of Two Variables Multiple Integration **Deeper Partial Derivatives** Theorem (Clairaut's³ Theorem (1743)) Let $D \subset \mathbb{R}^2$ be open and $f: D \to \mathbb{R}$. If $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ are continuous on D, then $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ on *D*. Proof. Let $(a, b) \in D$. Set q(h,k) = f(a+h,b+k) - f(a,b+k) - f(a+h,b) + f(a,b) $p(x, y) = f(x + h, y) - f(x, y) = \Delta_x f$ $q(x, y) = f(x, y+k) - f(x, y) = \Delta_y f$ Then $q(h,k) = p(a,b+k) - p(a,b) = \Delta_u p = \Delta_u \Delta_x f$ $q(h,k) = q(a+h,b) - q(a,b) = \Delta_x q = \Delta_x \Delta_y f$

MAT 5620: 62 ³Presented his first paper at age 13; only one of his 19 siblings to reach adulthood.

Deeper Partial Derivatives, II

Proof (cont).

Apply the MVT to $\Delta_y p$ and $\Delta_x q$ above to have (for some $\theta_j \in (0,1)$) $g(h,k) = k p_y(a,b+\theta_1 k) = k \cdot [f_y(a+h,b+\theta_1 k) - f_y(a,b+\theta_1 k)]$ $g(h,k) = h q_x(a+\theta_2 h,b)) = h \cdot [f_x(a+\theta_2 h,b+k) - f_x(a+\theta_2 h,b)]$

Apply the MVT to $\Delta_x f_y$ and $\Delta_y f_x$ above to have (for some $\theta_k \in (0, 1)$).

$$g(h,k) = hk f_{yx}(a + \theta_3 h, b + \theta_1 k)$$

$$g(h,k) = kh f_{xy}(a + \theta_2 h, b + \theta_4 k)$$

Whence

$$f_{yx}(a+\theta_3h,b+\theta_1k) = f_{xy}(a+\theta_2h,b+\theta_4k)$$

Let $h, k \to 0$. Since f_{xy} and f_{yx} are continuous, then

$$f_{yx}(a,b) = f_{xy}(a,b)$$

$\begin{array}{c} \mbox{Wether Calculus} & \mbox{Whence} & \mbox{Figure 1} \\ \hline \mbox{Decemperature 2} & \mb$

Operators and Exact Equations

Definition (Operators and Annihilators)

Let $C^1(S) = \{$ continuously differentiable fcns on $S \}.$

- An *operator* on S is a fcn $\Phi: C^1(S) \to C^1(S)$.
- An *annihilator* is an operator combination that maps a fcn to 0.

Definition (Exact Differential Equations)

A differential equation M dx + N dy = 0 is *exact* iff there is a function f(x, y) s.t. $M = \partial f / \partial x$ and $N = \partial f / \partial y$.

Examples

• $D_j = \frac{\partial}{\partial x_j}$ is an operator on $C^1(\mathbb{R}^n)$.

Functions of Two Variables

- $L = (D-2)^2$ annihilates the function $f_a(x) = axe^{2x}$.
- The DE $(2xy + y^2)dx + (x^2 + 2xy)dy = 0$ is exact from $f(x, y) = x^2y + xy^2$.

MAT 5620: 65

Intro to Lebesgue Measure

Partial Antiderivatives and Exact Equations

Multiple Integration

Example

Solve the DE: $2xy dx + (x^2 - 1) dy = 0$

Solution: Set M = 2xy and $N = x^2 - 1$.

1. Since
$$f_x = M = 2xy$$
, then $f(x, y) = \int 2xy \, dx = x^2y + \phi(y)$.

2. Now
$$f_y = N = (x^2 - 1)$$
, so

$$\frac{\partial}{\partial y} \left[x^2 y + \phi(y) \right] = x^2 - 1.$$

Since $\frac{\partial}{\partial y} \left[x^2 y + \phi(y) \right] = x^2 + \frac{d}{dy} \phi(y)$, we have $\phi'(y) = -1$. Whence $\phi(y) = -y$

Putting the pieces together, f(x, y) is given by

$$x^2y - y = c$$

where c is a constant of integration.

Try: $(x + y/(x^2 + y^2)) dx + (y - x/(x^2 + y^2)) dy = 0.$

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measu
	Tenene		
	langer	it Plane	

In \mathbb{R}^2

Consider...

- Slope of the tangent line at x = a is f'(a)
- Tangent line is y = f(a) + f'(a)(x a)

 $\ln \mathbb{R}^3$

- Tangent vector in the x direction at \vec{a} is $T_x = \langle 1, 0, f_x(\vec{a}) \rangle$
- Tangent vector in the y direction at \vec{a} is $T_y = \langle 0, 1, f_y(\vec{a}) \rangle$
- A plane containing \vec{a} and the tangent vectors is

$$(T_x \times T_y) \cdot (\vec{x} - \vec{a}) = 0$$

or (with $\vec{a} = \langle x_0, y_0 \rangle$ and $\vec{m}_{\vec{a}} = \langle f_x(\vec{a}), f_y(\vec{a}) \rangle$) $z = f(\vec{a}) + f_x(\vec{a})(x - x_0) + f_y(\vec{a})(y - y_0)$ $= f(\vec{a}) + \vec{m}_{\vec{a}} \cdot (\vec{x} - \vec{a})$

Differentiation

Definition (Derivative)

Let *f* be defined on the open set $D \subseteq \mathbb{R}^2$. Then *f* is *differentiable at* $\vec{x}_0 \in D$ iff there is a vector \vec{m} s.t. ▶ Picture Time

$$f(\vec{x}_0 + \vec{h}) = f(\vec{x}_0) + \vec{m} \cdot \vec{h} + \varepsilon \|\vec{h}\|$$

Equivalently: iff there is a vector \vec{m} s.t. for $T(\vec{x}) = f(\vec{x}_0) + \vec{m} \cdot (\vec{x} - \vec{x}_0)$, then

$$\lim_{\vec{x} \to \vec{x}_0} \frac{f(\vec{x}) - T(\vec{x})}{\|\vec{x} - \vec{x}_0\|} = 0$$

The gradient (vector) of f, written as ∇f of grad(f) is

$$\nabla f(\vec{x}_0) = \left\langle \frac{\partial f}{\partial x} \vec{x}_0, \frac{\partial f}{\partial y} \vec{x}_0 \right\rangle$$

Note: ∇ is a vector differential operator (generalizing D_x): $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle$.

³
$$T(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$$

$$\frac{2}{2} (1 + \sqrt{2})^{-1} (1 +$$

Derivative

Proof (The "Continuity of Partials Suffices" Thm).

Let $\vec{a} = \langle x_0, y_0 \rangle$. NTS: $\Delta f(\vec{a}) = \nabla f(\vec{a}) \cdot \langle \Delta x, \Delta y \rangle + \vec{\varepsilon} \cdot \langle \Delta x, \Delta y \rangle$ with $\vec{\varepsilon} \rightarrow \vec{0}$ as $\Delta x, \Delta y \rightarrow 0$. 1. Fix y. MVT $\Rightarrow \exists x_1 \in B(x_0; r)$ s.t. $f(x, y) - f(x_0, y) = f_x(x_1, y)(x - x_0)$ 2. $f_x \in C(D) \Rightarrow f_x(x_1, y) = f_x(x_0, y_0) + \varepsilon_x$ where $\varepsilon_x \rightarrow 0$ as $(x, y) \rightarrow (x_0, y_0)$ So $f(x, y) - f(x_0, y) = [f_x(x_0, y_0) + \varepsilon_x] (x - x_0)$ where $\varepsilon_x \longrightarrow 0$. 3. Fix x. MVT $\Rightarrow \exists y_1 \in B(y_0; r)$ s.t. $f(x, y) - f(x, y_0) = f_y(x, y_1)(y - y_0)$ 4. $f_y \in C(D) \Rightarrow f_y(x, y_1) = f_y(x_0, y_0) + \varepsilon_y$ where $\varepsilon_y \rightarrow 0$ as $(x, y) \rightarrow (x_0, y_0)$ So $f(x, y) - f(x, y_0) = [f_y(x_0, y_0) + \varepsilon_y] (y - y_0)$ where $\varepsilon_y \longrightarrow 0$. Whence $f(x, y) - f(x_0, y_0) = [f(x, y) - f(x_0, y)] + [f(x_0, y) - f(x_0, y_0)]$ $= [f_x(x_0, y_0) + \varepsilon_x] (x - x_0) + [f_y(x_0, y_0) + \varepsilon_y] (y - y_0)$

MAT 5620: 71

Intro to Lebesgue Measure

Derivatives and Continuity

Multiple Integration

Theorem ($D \Rightarrow C$ Thm)

If f is differentiable at \vec{a} , then f is continuous at \vec{a} .

Functions of Two Variables

Proof.

Since *f* is differentiable at \vec{a} ,

$$f(\vec{a} + \vec{h}) - f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{h} + \vec{\varepsilon} \|\vec{h}\|$$

where $\vec{\varepsilon} \to 0$ as $\vec{h} \to 0$. Thus

$$\left| f(\vec{a} + \vec{h}) - f(\vec{a}) \right| \le \left| \nabla f(\vec{a}) \cdot \vec{h} \right| + |\vec{\varepsilon}| \|\vec{h}\|$$

 $\leq \|\nabla f(\vec{a})\| \|h\| + |\vec{\varepsilon}| \|h\| = (\|\nabla f(\vec{a})\| + |\vec{\varepsilon}|) \|\vec{h}\|$

Whence $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = f(\vec{a}).$
Algebra of Derivatives

• $(x_0, y_0 + k) \xrightarrow[k \to 0]{} (x_0, y_0)$ equiv to $\langle x_0, y_0 \rangle + k \langle 0, 1 \rangle \xrightarrow[k \to 0]{} \langle x_0, y_0 \rangle$

3. With an arbitrary direction \vec{u} (unit vector): $\vec{x} + h \vec{u} \underset{h \to 0}{\longrightarrow} \vec{x}_0$

Definition (Directional Derivative)

Let *f* be defined on an open set *D* and $\vec{a} \in D$. Then the *directional derivative* of *f* in the direction of \vec{u} , a unit vector, is given, if the limit is finite, by

$$D_{\vec{u}}f(\vec{a}) = \lim_{h \to 0} \frac{f(\vec{a} + h\,\vec{u}) - f(\vec{a})}{h}$$

or

$$\frac{\partial f}{\partial \vec{u}}(\vec{a}) = \lim_{h \to 0} \frac{f(x + hu_x, y + hu_y) - f(x, y)}{h}$$

MAT 5620: 75

Directional Derivative's Properties

Theorem

If f is differentiable at \vec{a} , then $D_{\vec{u}}f(\vec{a})$ exists for any direction \vec{u} . And

 $D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a})\cdot\vec{u}$

Proof.

Simple computation from: $f(\vec{a} + h\vec{u}) = f(\vec{a}) + \nabla f(\vec{a}) \cdot (h\vec{u}) + \varepsilon ||h\vec{u}||$

Corollary ("Method of Steepest Ascent/Descent")

Let f be differentiable at \vec{a} . Then

- 1. The max rate of change of f at \vec{a} is $\|\nabla f(\vec{a})\|$ in the direction of $\nabla f(\vec{a})$.
- 2. The min rate of change of f at \vec{a} is $-\|\nabla f(\vec{a})\|$ in the direction of $-\nabla f(\vec{a})$.

Proof.

Simple computation from: $D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u} = \|\nabla f(\vec{a})\| \|\vec{u}\| \cos(\theta)$

Visit Maple.

f is not continuous at $\vec{0}$, but has directional derivatives in all directions at $\vec{0}$!

The Chain Rule

Theorem (The Chain Rule)

If x(t) and y(t) are differentiable at t_0 , and f is differentiable at $\vec{a} = (x(t_0), y(t_0))$, then f composed with x and y is differentiable at t_0 with

 $\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$

Proof.

Let z = f(x, y) and $\Delta t = t_1 - t_0$. Then $\Delta x = x(t_1) - x(t_0)$ and $\Delta y = y(t_1) - y(t_0)$. Since f is differentiable, we have $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) = f_x \Delta x + f_y \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$ So $\frac{\Delta z}{\Delta t} = f_x \frac{\Delta x}{\Delta t} + f_y \frac{\Delta y}{\Delta t} + \varepsilon_1 \frac{\Delta x}{\Delta t} + \varepsilon_2 \frac{\Delta y}{\Delta t}$ Since $\Delta t \to 0 \implies \Delta x, \Delta y \to 0$, then $\varepsilon_1, \varepsilon_2 \to 0$ with Δt .

MAT 5620: 77

The Mean Value Theorem

Theorem (*MVT for Two*)

Suppose *f* is differentiable on the open *D* containing the segment $L(\vec{p}, \vec{q})$. Then there is a \vec{c} on *L* s.t.

$$f(\vec{p}) - f(\vec{q}) = \nabla f(\vec{c}) \cdot (\vec{p} - \vec{q})$$

Proof.

- 1. Set $(x_0, y_0) = \vec{q}$ and $(h, k) = \vec{p} \vec{q}$
- 2. Set $g(t) = f(x_0 + ht, y_0 + kt)$ for $t \in [0, 1]$ (g parametrizes f on L)
- 3. Then $g(1) g(0) = g'(\theta)(1 0)$ for some $\theta \in (0, 1)$; i.e.

$$f(\vec{p}) - f(\vec{q}) = g'(\theta)$$

4. The MCR implies

$$g'(t) = f_x \, \frac{dx}{dt} + f_y \, \frac{dy}{dt} = \langle f_x, f_y \rangle \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$$

Multiple Integration

Intro to Lebesgue Measure

Taylor's Theorem

Theorem (MV Taylor's Theorem)

Functions of Two Variables

Suppose *f* has partial (n + 1)st derivatives (of all 'mixtures') existing on $B(\vec{a}; r)$. Then for $\vec{x} = \vec{a} + (h, k)$ in $B(\vec{a}; r)$,

$$f(\vec{a} + (h, k)) = f(\vec{a}) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f(\vec{a}) \\ + \frac{1}{2!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2f(\vec{a}) + \cdots \\ + \frac{1}{n!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^nf(\vec{a}) + R_n$$

where

$$R_n = \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(\vec{a} + \theta(h, k))$$

for some $\theta \in (0, 1)$.

Taylor's Theorem Eg

Example (Second Order, Two Variable)

Find the Taylor polynomial of order 2 at $\vec{a} = \langle 1, 1 \rangle$ and remainder for $f(x, y) = x^2 y$ and $\vec{x} = \langle 1, 1 \rangle + \langle h, k \rangle$.

1.
$$f(\vec{x}) = f(1,1) + [f_x(1,1) \cdot h + f_y(1,1) \cdot k] \\ + \frac{1}{2} \left[f_{xx}(1,1) \cdot h^2 + 2f_{xy}(1,1) \cdot hk + f_{yy}(1,1) \cdot k^2 \right] \\ + \frac{1}{3!} \left[f_{xxx}(1 + \theta h, 1 + \theta k) \cdot h^3 + 3f_{xxy}(1 + \theta h, 1 + \theta k) \cdot h^2 k + 3f_{xyy}(1 + \theta h, 1 + \theta k) \cdot hk^2 + f_{yyy}(1 + \theta h, 1 + \theta k) \cdot k^3 \right]$$
where $\theta \in (0,1)$

2.
$$f(1+h, 1+k) = 1 + [2h+k] + \frac{1}{2} [2h^2 + 4hk + 0k^2] + R_2$$

and $R_2 = \frac{1}{6} [0h^3 + 6h^2k + 0hk^2 + 0k^3] = h^2k$ with $\theta \in (0, 1)$

MAT 5620: 81

Intro to Lebesgue Measure

Multiple Integration

Multiple Integration

Definition (The Double Sums)

Functions of Two Variables

Suppose *f* is bounded on $R = [a, b] \times [c, d]$. Let $P = P_1 \times P_2$ be a partition of R given by $P_1 = \{a = x_0, \ldots, x_n = b\}$ and $P_2 = \{c = y_0, \ldots, y_m = d\}$ with $R_{ij} = [x_{i-1}, y_{j-1}] \times [x_i, y_j]$. Then the area of R_{ij} is $A_{ij} = \Delta x_i \cdot \Delta y_j$

- Set $||P|| = \max{\{\Delta x_i, \Delta y_j\}}.$
- Define

$$M_{ij}(f) = \sup_{R_{ij}} f(x, y)$$
 and $m_{ij}(f) = \inf_{R_{ij}} f(x, y)$

Then define

$$U(P,f) = \sum_{i} \sum_{j} M_{ij} \Delta x_i \Delta y_j = \sum_{i,j} M_{ij} A_{ij}$$
$$L(P,f) = \sum_{i} \sum_{j} m_{ij} \Delta x_i \Delta y_j = \sum_{i,j} m_{ij} A_{ij}$$
$$S(P,f) = \sum_{i} \sum_{j} f(c_i, d_j) \Delta x_i \Delta y_j = \sum_{i,j} f(c_i, d_j) A_{ij}$$
where $(c_i, d_j) \in R_{ij}$ is arbitrary.

A Useful Lemma

Lemma

Let *f* be bounded on the rectangle *R* with partition *P*. Set $m = \inf_R f(x, y)$ and $M = \sup_R f(x, y)$. 1. Then $m(b-a)(d-c) \le L(P, f) \le S(P, f) \le U(P, f) \le M(b-a)(d-c)$ 2. If *Q* partitions *R* and $P \subseteq Q$, then $L(P, f) \le L(Q, f)$ and $U(Q, f) \le U(P, f)$ 3. For any partitions *P* and *Q* of *R*, $L(P, f) \le U(Q, f)$. 4. $\sup_P L(P, f) \le \inf_P U(P, f)$ 5. The area of *R* is $A = \sum_{ij} A_{ij} = (b-a)(d-c)$

$\begin{array}{c|c|c<page-header><page-header>$

A Sample

Example

3

- Find $\iint_R f \, dA$ when $f(x, y) = \frac{1}{2} \sin(x+y)$ and $R = [0, \frac{\pi}{2}]^2$.
 - 1. Use a uniform grid: $x_i = \frac{i}{n} \frac{\pi}{2}$, $y_j = \frac{j}{n} \frac{\pi}{2}$, & $(c_i, d_j) = (x_i, y_j)$ for i, j = 0..n
 - 2. A generic Riemann sum becomes

$$S(P_n, f) = \sum_{i,j \in [1,n]} f\left(\frac{i}{n}\frac{\pi}{2}, \frac{j}{n}\frac{\pi}{2}\right) \left(\frac{i}{n}\frac{\pi}{2} - \frac{i-1}{n}\frac{\pi}{2}\right) \left(\frac{j}{n}\frac{\pi}{2} - \frac{j-1}{n}\frac{\pi}{2}\right)$$
$$= \frac{\pi^2}{4n^2} \sum_{i,j \in [1,n]} \frac{1}{2}\sin\left(\frac{i}{n}\frac{\pi}{2} + \frac{j}{n}\frac{\pi}{2}\right)$$

Since
$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$
, we have

$$S(P_n, f) = \frac{\pi^2}{8n^2} \sum_{i,j \in [1,n]} \left[\sin\left(\frac{i}{n}\frac{\pi}{2}\right)\cos\left(\frac{j}{n}\frac{\pi}{2}\right) + \cos\left(\frac{i}{n}\frac{\pi}{2}\right)\sin\left(\frac{j}{n}\frac{\pi}{2}\right) \right]$$

$$= \frac{\pi^2}{8n^2} \sum_{i,j \in [1,n]} \left[\sin\left(\frac{i}{n}\frac{\pi}{2}\right)\cos\left(\frac{j}{n}\frac{\pi}{2}\right) \right] + \sum_{i,j \in [1,n]} \left[\cos\left(\frac{i}{n}\frac{\pi}{2}\right)\sin\left(\frac{j}{n}\frac{\pi}{2}\right) \right]$$

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure		
A Sample (cont)					
Example (cont)					
4. Dist	ribute the sums				
S(F	$P_n, f) = \frac{\pi^2}{8n^2} \left[\sum_{i=1}^n \sin(\frac{i}{n} \frac{\pi}{2}) \sum_{j=1}^n e^{-\frac{\pi^2}{2}} \right]$	$\sum_{n=1}^{\infty} \cos\left(\frac{j}{n}\frac{\pi}{2}\right) + \sum_{i=1}^{n} \cos\left(\frac{j}{n}\right)$	$\left[\frac{i}{n}\frac{\pi}{2}\right)\sum_{j=1}^{n}\sin\left(\frac{j}{n}\frac{\pi}{2}\right)$		
	$= 2\frac{\pi^2}{8n^2} \sum_{i=1}^n \cos\left(\frac{i}{n}\frac{\pi}{2}\right) \sum_{j=1}^n$	$\sum_{n=1}^{\infty} \sin\left(\frac{j}{n}\frac{\pi}{2}\right)$			
	$= \left[\frac{\pi}{2n} \sum_{i=1}^{n} \cos\left(\frac{i}{n} \frac{\pi}{2}\right)\right] \cdot \left $	$\left[\frac{\pi}{2n}\sum_{j=1}^n \sin\left(\frac{j}{n}\frac{\pi}{2}\right)\right]$			
5. $\lim_{n \to \infty}$	$\int_{0}^{\frac{\pi}{2n}} \sum_{j=1}^{n} T\left(\frac{j}{n}\frac{\pi}{2}\right) = \int_{0}^{\pi/2} T(x)$ $\lim_{x \to \infty} S(P_{n-1}) = \int_{0}^{\pi/2} T(x) dx$	dx, so $\cos(x) dx \cdot \int^{\pi/2} \sin(x) dx$	dx = 1		
6. Whe	ence $\iint_{[0,\pi/2]\times[0,\pi/2]} \frac{1}{2}\sin(x+y) dA$	$J_0 = 1$			

Continuous Functions

Theorem (Continuous Functions Are Integrable)

If f is continuous on $R = [a, b] \times [c, d]$, then f is integrable on R.

Proof.

Let $\varepsilon > 0$. Set $A = \operatorname{area}(R)$.

- 1. Since *f* is cont on *R*, then *f* is unif cont on *R*. Hence there is a $\delta > 0$ s.t. whenever $\vec{x_1}, \vec{x_2} \in R$ with $\|\vec{x_1} \vec{x_2}\| < \delta$, then $|f(\vec{x_1}) f(\vec{x_2})| < \varepsilon$.
- 2. Choose a partition P s.t. $||P|| < \delta$.

3. Then
$$U(P, f) - L(P, f) = \sum_{i,j} M_{ij} \Delta x_i \Delta y_j - \sum_{i,j} m_{ij} \Delta x_i \Delta y_j$$
. I.e.,
 $U(P, f) - L(P, f) = \sum_{i,j} (M_{ij} - m_{ij}) \Delta A_{ij} < \sum_{i,j} \varepsilon \Delta A_{ij} = A \varepsilon$

MAT 5620: 87

$\begin{array}{c|c{20}{c} \hline \hline \mbox{(200) below (200) below (200)$

Iteration

Thinking Out Loud...

1. Fix x^* . Suppose $f(x^*, y)$ is an integrable function of y. Define

$$g(x) = \int_{[c,d]} f(x,y) \, dy$$

Then integrate g to get

$$\int_{[a,b]} \left[\int_{[c,d]} f(x,y) \, dy \right] dx$$

2. Fix y^* . Suppose $f(x, y^*)$ is an integrable function of x. Define

$$h(y) = \int_{[a,b]} f(x,y) \, dx$$

Then integrate h to get

$$\int_{[c,d]} \left[\int_{[a,b]} f(x,y) \, dx \right] dy$$

Multiple Integration

How do these integrals relate to $\iint_B f \, dA$?

Functions of Two Variables

MAT 5620: 89

Intro to Lebesgue Measure

Iteration and Guido Fubini

Theorem (Fubini (1910))

Let *f* be integrable on a rectangle *R*. If for each *x*, the function h(y) = f(x, y) is integrable over $y \in [c, d]$, then $g(x) = \int_c^d f(x, y) \, dy$ is integrable for $x \in [a, b]$, and

$$\iint_{R} f \, dA = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] dx$$

Corollary

Let f be integrable on a rectangle R. If

- 1. h(y) = f(x, y) is integrable over $y \in [c, d]$, and
- 2. k(x) = f(x, y) is integrable over $x \in [a, b]$,

then

$$\iint_{R} f \, dA = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) \, dx \right] dy$$

Proving Fubini's Theorem

Proof (sketch).

Let $\varepsilon > 0$.

- 1. Find a partition P of $[a, b] \times [c, d]$ where $U(P, f) L(P, f) < \varepsilon$
- 2. 'Slice' this partition into $P_1(x) \times P_2(y)$.
- 3. Use $U(P_1, g) L(P_1, g) < U(P, f) L(P, f)$ to show

$$g(x) = \int_{[c,d]} f(x,y) dy$$
 is integrable over $[a,b]$.

4. Show
$$L(P, f) \leq \int_{[a,b]} g \, dx \leq U(P, f)$$

5. Conclude
$$\int_{[a,b]} g(x) dx = \iint_R f(x,y) dA$$

6. Use symmetry to have
$$\int_{[c,d]} h(y) \, dy = \iint_R f(x,y) dA$$

Observe the doneness of the proof.

MAT 5620: 91

(2007) We find the formation of the for

Fubini Examples II

Example (Bad	Funci	tion!	No	Biscu	it!)
	<u>_2</u>	2				

Let
$$f(x, y) = \frac{x - y}{(x^2 + y^2)^2}$$
 on $R = [0, 1] \times [0, 1]$.
1. $\int_0^1 \left[\int_0^1 f(x, y) \, dx \right] dy = -\frac{\pi}{4}$
2. $\int_0^1 \left[\int_0^1 f(x, y) \, dy \right] dx = +\frac{\pi}{4}$
3. $\int_0^1 \left[\int_0^1 |f(x, y)| \, dy \right] dx = \infty$

So $\iint_{R} f(x,y) \, dA$ does not exist

unit disk

Camille Jordan's Content

Definition (Jordan Content Zero)

A set *S* has *Jordan content zero* iff for each $\varepsilon > 0$ there is a finite collection \mathcal{R} of rectangles R_{ij} s.t.

- $S \subseteq \bigcup_{ij} R_{ij}$
- $\operatorname{area}(\mathcal{R}) = \sum_{ij} \operatorname{area}(R_{ij}) < \varepsilon$

A bounded set D is Jordan measurable iff ∂D has Jordan content zero.

Examples

- log spiral on $[9.5297^{-1}, 9.5297]$
 - Hilbert's plane filling curve, space filling curve

Proposition

- Rectifiable curves have Jordan content zero.
- The union of sets of content zero has content zero.

MAT 5620: 95

Intro to Lebesgue Measure

Jordan's Extension

Multiple Integration

Theorem

If f is continuous on $R = [a, b] \times [c, d]$ except on a set of Jordan content zero, then f is integrable on R.

Proof.

- 1. Since R is compact and f is cont, $\exists M > 0$ s.t. |f(x, y)| < M on R.
- 2. For each R_{ij} we see $M_{ij} m_{ij} < 2M$.

Functions of Two Variables

- 3. Let S be the set of discontinuities of f. So S has content zero.
- 4. Let $\varepsilon > 0$. Find *P* s.t. for the rect's covering *S*, the $\sum \operatorname{area}(R_{ij}) < \varepsilon$
- 5. Divide the *P* into P_S and $P_{\bar{S}}$ where P_S contains the rectangles covering *S*. Then $U(P) L(P) = [U(P_S) + U(P_{\bar{S}})] [L(P_S) + L(P_{\bar{S}})]$.
- 6. Combine with 4: $U(P_S) L(P_S) \le \sum (M_{ij} m_{ij}) \Delta A_{ij} < 2M\varepsilon$
- 7. *f* is unif cont on $P_{\bar{S}}$ so refine *P* to obtain $M_{ij} m_{ij} < \varepsilon$ on *P'*
- 8. Then $\sum_{R_{ij} \in P'} (M_{ij} m_{ij}) \Delta A_{ij} < \varepsilon \sum \Delta A_{ij} < \varepsilon A$

Bounded, Jordan-Measurable Regions

Proposition (Integral on a B'nded, Jordan-Mble Set)

Let *D* be a bounded, Jordan-measurable region in \mathbb{R}^2 and let *f* be continuous on *D*. Define $\chi_D(x) = 1$ for $x \in D$ and 0 for $x \notin D$. Suppose the rectangle $R \supset D$.

•
$$\iint_D f \, dA \stackrel{\Delta}{=} \iint_R f \, \chi_D \, dA$$

• If *D* is the region $[a, b] \times [\alpha(x), \beta(x)]$ where $\alpha \leq \beta$, then

$$\iint_{D} f \, dA \stackrel{\Delta}{=} \int_{a}^{b} \int_{\alpha(x)}^{\beta(x)} f(x, y) \, dy \, dx$$

• If *D* is the region $[\alpha(y), \beta(y)] \times [c, d]$ where $\alpha \leq \beta$, then

$$\iint_{D} f \, dA \stackrel{\Delta}{=} \int_{c}^{d} \int_{\alpha(y)}^{\beta(y)} f(x, y) \, dx \, dy$$

Line Integrals

Definition (Line Integral)

If f is continuous on a region D containing a smooth curve C, then the *line integral of* f *along* C is

$$\int_C f \, ds = \lim_{n \to \infty} \sum_{k=1}^n f(c_i, d_i) \, \Delta s_i$$

Proposition

If *C* has a smooth parametrization (x(t), y(t)) for $t \in [a, b]$, then

$$\int_{C} f \, ds = \int_{a}^{b} f(x(t), y(t)) \, s'(t) \, dt$$
$$= \int_{a}^{b} f(x(t), y(t)) \, \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} \, dt$$

мат	5620.	qc
VIAI	J0∠0.	95

F

Green's Theorem

Theorem (Green's Theorem⁵)

Let *D* be a simple region in \mathbb{R}^2 with a positively-oriented, closed boundary ∂D . If $\vec{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ is a continuously differentiable vector field on an open region containing D, then

 $\oint_{\partial D} M \, dx + N \, dy = \iint_{D} (N_x - M_y) dx \, dy$

Theorem (Differential Forms Version)

For *D* as above and a differentiable (n-1)-form ω , $\int_{\partial D} \omega = \int_{D} d\omega$

MAT 5620: 101

Corollary (Area of a Region)

for
$$f$$
 and D as above, $\operatorname{Area}(D) = \frac{1}{2} \oint_{\partial D} x \, dy - y \, dx$

⁵There are a number of equivalent forms of Green's Theorem.

Functions of Two Variables Intro to Lebesgue Measure **Multiple Integration** Interlude Green's Theorem Applied⁶ A Planimeter

⁶Build your own planimeter.

Functions of Two Variables

Intro to Lebesgue Measure

Proving Green's Theorem

Proof.

I. $D = \{(x, y) : a \le x \le b \text{ and } g_1(x) \le y \le g_2(x)\}$. By linearity, NTS:			
$\oint_{\partial D} M dx = - \iint_{D} M_y \text{and} \oint_{\partial D} N dy = \iint_{D} N_x$			
1. Now $\iint_D M_y = \int_a \int_{g_1} M_y dy dx.$			
2. The FToC gives $\iint_D M_y = \int_a [M(x,g_2) - M(x,g_1)]dx$			
3. Decompose ∂D into $D_1 = \{x, g_1(x)\}, D_2 = \{x = b, g_1(b) \le y \le g_2(b)\}, D_3 = \{x, g_2(x)\}, \text{ and } D_4 = \{x = a, g_2(a) \ge y \ge g_1(a)\}$			
4. On D_2 and D_4 , $dx = 0$, so $\oint_{\partial D} = \oint_{D_1} + \oint_{D_3}$			
5. Then $\oint_{\partial D} M dx = \int_{a}^{b} M(t, g_1(t)) dt + \int_{b}^{a} M(t, g_2(t)) dt$			
$= \int_{a}^{b} M(t, g_{1}(t)) - M(t, g_{2}(t)) dt = - \iint_{D} M_{y}. \text{Aha!} \oint_{\partial D} M dx = - \iint_{D} M_{y}.$			
II. Analogously, $\oint_{\partial D} N dy = \iint_D N_x.$			
MAT 5	5620: 10		

Forms of Green's Theorem

Multiple Integration

Theorem"Under suitable conditions,"1. $\oint_{\partial D} M \, dx + N \, dy = \oint_{\partial D} \vec{F} \cdot \vec{T} \, ds$ Circulation Thm2. $\oint_{\partial D} M \, dx - N \, dy = \oint_{\partial D} \vec{F} \cdot \vec{N} \, ds$ Flux Thm3. $\iint_{D} (M_x + N_y) \, dA = \iint_{D} \operatorname{div}(\vec{F}) \, dA$ Divergence Thm4. $\iint_{D} (N_x - M_y) \, dA = \iint_{D} \operatorname{curl}(\vec{F}) \, dA$ Curl Thm $\operatorname{div}(\vec{v}) = \nabla \cdot \vec{v}$ and $\operatorname{curl}(\vec{v}) = \nabla \times \vec{v}$

Henri Lebesque's Mathematical Genealogy

(partial)

Introduction to Lebesgue Measure

Prelude

There were two problems with calculus: there are functions where

•
$$f(x) \neq \int f'(x) dx$$

• $f(x) \neq \frac{d}{dx} \left[\int f(x) dx \right]$

In his 1902 dissertation, "Intégrale, longueur, aire," Lebesgue wrote, "It thus seems to be natural to search for a definition of the integral which makes integration the inverse operation of differentiation in as large a range as possible."

What's in a Measure

Goals

THE BEST *measure* would be a real-valued set function μ that satisfies

- 1. $\mu(I) = \text{length}(I)$ where *I* is an interval
- 2. μ is *translation invariant*: $\mu(x + E) = \mu(E)$ for any $x \in \mathbb{R}$
- 3. if $\{E_n\}$ is pairwise disjoint, then $\mu(\bigcup_n E_n) = \sum_n \mu(E_n)$
- 4. $\operatorname{dom}(\mu) = \mathcal{P}(\mathbb{R})$ (the power set of \mathbb{R})

THE BAD NEWS:

 $\left. \begin{array}{c} \textit{continuum hypothesis} \\ + \textit{ axiom choice} \end{array} \right\} \implies 1, 3, \text{ and 4 are incompatible}$

THE PLAN:

- Give up on 4. (cf. Vitali)
- 1. and 2. are nonnegotiable
- Weaken 3., then reclaim it

Sigma Algebras

Definition Sigma Algebra of Sets Algebra: A collection of sets A is an *algebra* iff A is closed under unions and complements. σ -Algebra: An algebra of sets A is a σ -algebra iff A is closed under countable unions. Proposition Let A be a nonempty algebra of sets of reals. Then • \emptyset and $\mathbb{R} \in \mathcal{A}$. • *A* is closed under intersection. Let A be a nonempty σ -algebra of sets of reals. Then • *A* is closed under countable intersections. MAT 5620: 107 Functions of Two Variables Multiple Integration Intro to Lebesgue Measure Sigma Samples

vamnlee
Addipies
1. $\mathcal{A} = \{\emptyset, \mathbb{R}\}$
2. $\mathcal{F} = \{F \subset \mathbb{R} : F \text{ is finite or } F^c \text{ is finite}\}$
2.1 \mathcal{F} is an algebra, the <i>co-finite algebra</i>
2.2 \mathcal{F} is not a σ -algebra
For each $r \in \mathbb{Q}$, the set $\{r\} \in \mathcal{F}$. But $\bigcup_{r \in \mathbb{Q}} \{r\} = \mathbb{Q} \notin \mathcal{F}$
3. Let $\mathcal{A} = \{ \emptyset, [-1, 1], (-\infty, -1) \cup (1, \infty), \mathbb{R} \}$. Is \mathcal{A} an algebra?
4. Any intersection of σ -algebras is a σ -algebra
5. Let $\mathcal{B}(\mathbb{R})$ be the smallest σ -algebra containing all the open sets,
the Borel σ -algebra.

Outer Measure

Definition (Lebesque Outer	Measure)

Let $E \subset \mathbb{R}$. Define the *Lebesgue Outer Measure* μ^* of E to be

$$\mu^*(E) = \inf_{E \subset \bigcup I_n} \sum_n \ell(I_n),$$

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)

If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$.

Proposition

If *I* is an interval, then $\mu^*(I) = \ell(I)$.

MAT 5620: 109

Intro to Lebesgue Measure

Outer Measure of an Interval

Multiple Integration

Proof.

I. *I* is closed and bounded (compact). Then I = [a, b].

Functions of Two Variables

- 1. For any $\varepsilon > 0$, $[a, b] \subset (a \varepsilon, b + \varepsilon)$. So $\mu^*(I) \leq b a + 2\varepsilon$. Since ε is arbitrary, $\mu^*(I) \leq b a$.
- 2. Let $\{I_n\}$ cover [a, b] with open intervals. There is a finite subcover for [a, b]. Order the subcover so that consecutive intervals overlap. Then

$$\sum_{N} \ell(I_k) = (b_1 - a_1) + (b_2 - a_2) + \dots + (b_N - a_N)$$

Rearrange

$$\sum_{N} \ell(I_k) = b_N - (a_N - b_{N-1}) - (a_{N-1} - b_{N-2}) - \dots - (a_2 - b_1) - a_1$$

> $b_N - a_1 > b - a$

Whence $\mu^*(I) = b - a$.

Outer Measure of an Interval, II

Open Holding & Lebesgue's Measure

Corollary

Given $E \subseteq \mathbb{R}$ and $\varepsilon > 0$, there is an open set $O \supseteq E$ s.t.

 $\mu^*(E) \le \mu^*(O) \le \mu^*(E) + \varepsilon$

Definition (Carathéodory's Condition)

A set E is Lebesgue measurable iff for every (test) set A,

$$\mu^{*}(A) = \mu^{*}(A \cap E) + \mu^{*}(A \cap E^{c})$$

Let \mathfrak{M} be the collection of all Lebesgue measurable sets.

Corollary

For any A and E,

 $\mu^*(A) = \mu^*((A \cap E) \cup (A \cap E^c)) \le \mu^*(A \cap E) + \mu^*(A \cap E^c)$

Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

Countable Unions Work

Theorem

The countable union of measurable sets is measurable.

Proof.

Let $E_k \in \mathfrak{M}$ and $E = \bigcup_n E_n$. Choose a test set A. We need to show $\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$.

- 1. Set $F_n = \bigcup^n E_k$ and $F = \bigcup^\infty E_k = E$. Define $G_1 = E_1$, $G_2 = E_2 - E_1, \dots, G_k = E_k - \bigcup^{k-1} E_j$, and $G = \bigcup G_k$. Then (i) $G_i \cap G_j = \emptyset$, $(i \neq j)$ (ii) $F_n = \bigcup G_k$ (iii) F = G = E
- 2. Test F_n with A to obtain $\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c)$
- **3**. Test G_n with $A \cap F_n$ to obtain

$$\mu^*(A \cap F_n) = \mu^*((A \cap F_n) \cap G_n) + \mu^*((A \cap F_n) \cap G_n^c)$$

= $\mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$

Countable Unions Work, II

Proof.

4. Iterate $\mu^*(A \cap F_n) = \mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$ from 3 to have

$$\mu^*(A \cap F_n) = \sum_{k=1}^n \mu^*(A \cap G_k)$$

5. Since $F_n \subseteq F$, then $F^c \subseteq F_n^c$ for all n, then

$$\mu^*(A \cap F_n^c) \ge \mu^*(A \cap F^c)$$

6. Whence

$$\mu^*(A) \ge \sum_{k=1}^n \mu^*(A \cap G_k) + \mu^*(A \cap F^c)$$

The summation is increasing & bounded, so convergent.

7. However

$$\sum_{k=1}^{\infty} \mu^*(A \cap G_k) \ge \mu^*\left(\bigcup_{k=1}^{\infty} (A \cap G_k)\right) = \mu^*(A \cap F)$$

Aha! $\mu^*(A) \ge \mu^*(A \cap F) + \mu^*(A \cap F^c)$

мαт	5620.	1	17
IVIAI	5020.		17

$\begin{tabular}{|c|c|c|c|c|c|c|} \hline the formula of two Variables & Multiple Integration & Intro to Lebesgue Measure \\ \hline $Everything Works$ \\ \hline $Corollary$ \\ \hline $The collection of Lebesgue measurable sets \mathfrak{M} is a σ-algebra. \\ \hline $Corollary$ \\ \hline $The Borel sets are measurable. (There are measurable, non-Borel sets.) \\ \hline $\mathcal{B}(\mathbb{R}) \subsetneqq \mathfrak{M} \gneqq \mathcal{P}(\mathbb{R})$ \\ \hline $Definition (Lebesgue Measure)$ \\ \hline $Lebesgue measure μ is μ^* restricted to \mathfrak{M}. So μ: $\mathfrak{M} \to [0, ∞]$ \\ \hline $Definition (Almost Everywhere)$ \\ \hline A property P holds almost everywhere (a.e.) iff $\mu(\{x: $\neg P(x)\}) = 0$. \\ \hline $P(x) = 1$ \\ \hline $P(x) =$

The Return of Additivity

Theorem

Let $\{E_n\}$ be a countable (finite or infinite) sequence of pairwise disjoint sets in \mathfrak{M} . Then

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k)$$

Proof.

I. *n* is finite.

- 1. For $n = 1, \checkmark$
- 2. $\left(\bigcup_{k=1}^{n} E_k\right) \cap E_n = E_n$ and $\left(\bigcup_{k=1}^{n} E_k\right) \cap E_n^c = \bigcup_{k=1}^{n-1} E_k$

3.
$$\mu(\bigcup_{k=1}^{n} E_k) = \mu([\bigcup_{k=1}^{n} E_k] \cap E_n) + \mu([\bigcup_{k=1}^{n} E_k] \cap E_n^c)$$

= $\mu(E_n) + \mu(\bigcup_{k=1}^{n-1} E_k) = \mu(E_n) + \sum_{k=1}^{n-1} \mu(E_k) = \sum_{k=1}^{n} \mu(E_k)$

II. *n* is infinite.

- 1. $\bigcup_{k=1}^{n} E_k \subset \bigcup_{k=1}^{\infty} E_k \implies \mu\left(\bigcup_{k=1}^{n} E_k\right) = \sum_{k=1}^{n} \mu(E_k) \le \mu\left(\bigcup_{k=1}^{\infty} E_k\right)$
- 2. A bided & incr sum converges. Thus $\sum_{k=1}^{\infty} \mu(E_k) \leq \mu(\bigcup_{k=1}^{\infty} E_k)$
- 3. Subadditivity finishes the proof.

Functions of Two Variables

MAT 5620: 119

Intro to Lebesgue Measure

Adding an Example

Multiple Integration

Example

Vector Calculus

Set
$$E_n = \left(\frac{n-1}{n}, \frac{n}{n+1}\right)$$
 for $n = 1..\infty$

1. The E_n are pairwise disjoint.

2.
$$\mu(E_n) = \ell(E_n) = \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}$$

3. $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left[\frac{1}{n} - \frac{1}{n+1}\right]$

Whence $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = 1.$

NOTA BENE:
$$\bigcup_{n=1}^{\infty} E_n = (0,1) - \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$$
. Hence $\bigcup_{n=1}^{\infty} E_n = (0,1)$ a.e.

Matryoshka

Theorem

If $\{E_n\}$ is a seq of nested, measurable sets with $\mu(E_1) < \infty$, then

$$\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

Proof.

1. Set $E = \bigcap_{k=1}^{\infty} E_k$. Set $F_k = E_k - E_{k+1}$. The F_k are pairwise disjoint.

2. Since
$$\bigcup_{k=1}^{\infty} F_k = E_1 - E$$
, then $\mu(E_1 - E) = \sum_{k=1}^{\infty} \mu(F_k) = \sum_{k=1}^{\infty} \mu(E_k - E_{k+1})$

3. If
$$A \subset B$$
, then $\mu(A - B) = \mu(A) - \mu(B)$. Apply to the formula above.

4.
$$\mu(E_1) - \mu(E) = \sum_{k=1}^{\infty} \mu(E_k) - \mu(E_{k+1}) = \mu(E_1) - \lim_{k \to \infty} \mu(E_k)$$

Since $\mu(E_1)$ is finite, we're done.

MAI 5620: 121	MAT	5620:	121
---------------	-----	-------	-----

Not So Strange After All

Theorem

Let $E \subseteq \mathbb{R}$ and let $\varepsilon > 0$. TFAE:

- 1. E is measurable
- 2. There is an open set $O \supset E$ s.t. $\mu^*(O E) < \varepsilon$
- 3. There is a closed set $F \subset E$ s.t. $\mu^*(E F) < \varepsilon$

Proposition

Let S and T be measurable subsets of \mathbb{R} . Then

$$\mu(S \cup T) + \mu(S \cap T) = \mu(S) + \mu(T)$$

The Measurably Functional

Corollary

If *f* satisfies any measurability condition, then $\{x \mid f(x) = r\}$ is measurable for each *r*.

Definition (Measurable Function)

If a function $f: D \to \mathbb{R}_{\infty}$ has measurable domain D and satisfies any of the measurability conditions, then f is *measurable*.

Definition

Step function: $\phi:[a,b] \to \mathbb{R}_{\infty}$ is a *step function* if there is a partition $a = x_0$ $\langle x_1 \langle \cdots \langle x_n = b \text{ s.t. } \phi \text{ is constant on each interval } I_k = (x_{k-1}, x_k), \text{ then } I_k$

$$\phi(x) = \sum_{k=1}^{n} a_k \chi_{I_k}(x)$$

Simple function: A function ψ with range $\{a_1, a_2, \ldots, a_n\}$ where each set $\psi^{-1}(a_k)$ is measurable is a *simple function*.

5. $\limsup_{n \to \infty} f_n$

6. $\liminf f_n$

MAT 5620: 127

Sequencing

Theorem

Let $\{f_n\}$ be a sequence of measurable functions on a common domain D. Then

1. $\sup \{f_1, \ldots, f_n\}$ 3. $\sup_{n \to \infty} f_n$ 2. $\inf \{f_1, \ldots, f_n\}$ 4. $\inf_{n \to \infty} f_n$

are all measurable.

Proof.

1. Set $f = \{f_1, ..., f_n\}$. Then $\{f(x) > r\} = \bigcup_{k=1}^n \{f_k(x) > r\}$. 3. Set $F = \sup_n f_n$. Then $\{F(x) > r\} = \bigcup_{k=1}^\infty \{f_k(x) > r\}$. 5. Set $\Phi = \limsup_n f_n$. Then $\limsup_{n \to \infty} f_n = \inf_n \left[\sup_{k \ge n} f_k\right]$

Theorem

Let $f:[a,b] \to \mathbb{R}$. Then f is measurable iff there is a seq. of simple functions $\{\psi_n\}$ converging to f a.e.

A Simple Proof

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure Integration

We began by looking at two examples of integration problems.

The Riemann integral over [0, 1] of a function with infinitely many discontinuities didn't exist even though the points of discontinuity formed a set of measure zero.

(The points of discontinuity formed a dense set in [0, 1].)

 The limit of a sequence of Riemann integrable functions did not equal the integral of the limit function of the sequence. (Each function had area ¹/₂, but the limit of the sequence was the zero function.)

We will look at Riemann integration, then Riemann-Stieltjes integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron, etc. See the list given in the "See also" section of *Integrals* on Mathworld.

Riemann Integral

Definition

- A partition \mathcal{P} of [a, b] is a finite set of points such that $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b\}.$
- Set $M_i = \sup f(x)$ on $[x_{i-1}, x_i]$. The *upper sum* of f on [a, b] w.r.t. \mathcal{P} is $U(\mathcal{P} \mid f) = \sum_{i=1}^{n} M_i \cdot \Delta x_i$

$$U(\mathcal{P}, f) = \sum_{i=1}^{N} M_i \cdot \Delta x$$

• The upper Riemann integral of f over [a, b] is \overline{f}^{b}

Functions of Two Variables

$$\int_{a}^{b} f(x) \, dx = \inf_{\mathcal{P}} U(\mathcal{P}, f)$$

Exercise

1. Define the lower sum $L(\mathcal{P}, f)$ and the lower integral $\int_{a}^{b} f$.

MAT 5620: 131

Intro to Lebesgue Measure

Definitely a Riemann Integral

Multiple Integration

Definition

If $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$, then f is Riemann integrable and is written as $\int_{a}^{b} f(x) dx$ and $f \in \Re$ on [a, b].

Proposition

A function f is Riemann integrable on [a, b] if and only if for every $\epsilon > 0$ there is a partition \mathcal{P} of [a, b] such that

 $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \epsilon.$

Theorem

If f is continuous on [a, b], then $f \in \mathfrak{R}$ on [a, b].

Theorem

If *f* is bounded on [a, b] with only finitely many points of discontinuity, then $f \in \mathfrak{R}$ on [a, b].

Properties of Riemann Integrals

Proposition

Let f and $g \in \mathfrak{R}$ on [a, b] and $c \in \mathbb{R}$. Then

- $\int_a^b cf \, dx = c \int_a^b f \, dx$
- $\int_a^b (f+g) \, dx = \int_a^b f \, dx + \int_a^b g \, dx$
- $f \cdot g \in \mathfrak{R}$
- if $f \leq g$, then $\int_a^b f \, dx \leq \int_a^b g \, dx$

•
$$\left|\int_{a}^{b} f \, dx\right| \leq \int_{a}^{b} |f| \, dx$$

• Define $F(x) = \int_a^x f(t) dt$. Then *F* is continuous and, if *f* is continuous at x_0 , then $F'(x_0) = f(x_0)$

• If
$$F' = f$$
 on $[a, b]$, then $\int_{a}^{b} f(x) dx = F(b) - F(a)$

MAT 5620: 133

er Cădulă (2008) Antipologie de la construction de

Riemann-Stieltjes Integral

Definition

- Let $\alpha(x)$ be a monotonically increasing function on [a, b]. Set $\Delta \alpha_i = \alpha(x_i) \alpha(x_{i-1})$.
- Set $M_i = \sup f(x)$ on $[x_{i-1}, x_i]$. The *upper sum* of f on [a, b] w.r.t. α and \mathcal{P} is

$$U(\mathcal{P}, f, \alpha) = \sum_{i=1}^{n} M_i \cdot \Delta \alpha_i$$

• The upper Riemann-Stieltjes integral of f over [a, b] w.r.t. α is $\int_{a}^{b} f(x) d\alpha(x) = \inf_{\mathcal{P}} U(\mathcal{P}, f, \alpha)$

Exercise

1. Define the lower sum $L(\mathcal{P}, f, \alpha)$ and lower integral $\int_a^b f d\alpha$.

MAT 5620: 135

Intro to Lebesgue Measure

Definitely a Riemann-Stieltjes Integral

Multiple Integration

Definition

If $\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha$, then *f* is Riemann-Stieltjes integrable and is written as $\int_{a}^{b} f(x) \, d\alpha(x)$ and $f \in \Re(\alpha)$ on [a, b].

Proposition

A function f is Riemann-Stieltjes integrable w.r.t. α on [a, b] iff for every $\epsilon > 0$ there is a partition \mathcal{P} of [a, b] such that

 $U(\mathcal{P}, f, \alpha) - L(\mathcal{P}, f, \alpha) < \epsilon.$

Theorem

If f is continuous on [a, b], then $f \in \mathfrak{R}(\alpha)$ on [a, b].

Functions of Two Variables

Theorem

If *f* is bounded on [a, b] with only finitely many points of discontinuity and α is continuous at each of *f*'s discontinuities, then $f \in \mathfrak{R}(\alpha)$ on [a, b].

Properties of Riemann-Stieltjes Integrals

Proposition

Let f and $g \in \mathfrak{R}(\alpha)$ and in β on [a, b] and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} cf \, d\alpha = c \int_{a}^{b} f \, d\alpha$ and $\int_{a}^{b} f \, d(c\alpha) = c \int_{a}^{b} f \, d\alpha$
- $\int_{a}^{b} (f+g) \, d\alpha = \int_{a}^{b} f \, d\alpha + \int_{a}^{b} g \, d\alpha \quad \text{and}$ $\int_{a}^{b} f \, d(\alpha + \beta) = \int_{a}^{b} f \, d\alpha + \int_{a}^{b} f \, d\beta$
- $f \cdot g \in \mathfrak{R}(\alpha)$
- if $f \leq g$, then $\int_a^b f \, d\alpha \leq \int_a^b g \, d\alpha$

Functions of Two Variables

•
$$\left| \int_{a}^{b} f \, d\alpha \right| \leq \int_{a}^{b} |f| \, d\alpha$$

• Suppose that $\alpha' \in \Re$ and f is bounded. Then $f \in \Re(\alpha)$ iff $f\alpha' \in \Re$ and

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \cdot \alpha' \, dx$$

Multiple Integration

MAT 5620: 137

Intro to Lebesgue Measure

Riemann-Stieltjes Integrals and Series

Proposition

If f is continuous at $c \in (a,b)$ and $\alpha(x) = r$ for $a \leq x < c$ and $\alpha(x) = s$ for $c < x \leq b,$ then

$$\int_{a}^{b} f \, d\alpha = f(c) \left(\alpha(c+) - \alpha(c-) \right)$$
$$= f(c) \left(s - r \right)$$

Proposition

Let $\alpha = \lfloor x \rfloor$, the greatest integer function. If *f* is continuous on [0, b], then

$$\int_{0}^{b} f(x) d\lfloor x \rfloor = \sum_{k=1}^{\lfloor b \rfloor} f(k)$$

Riemann-Stieltjes Integrated Exercises

Exercises1. $\int_0^1 x \, dx^2$ 4. $\int_{-1}^1 e^x d|x|$ 2. $\int_0^{\pi/2} \cos(x) d\sin(x)$ 5. $\int_{-3/2}^{3/2} e^x d|x|$ 3. $\int_0^{5/2} x \, d(x - \lfloor x \rfloor)$ 6. $\int_{-1}^1 e^x d\lfloor x \rfloor$ 7. Set H to be the Heaviside function; i.e., $H(x) = \begin{cases} 0 & x \le 0 \\ 1 & otherwise \end{cases}$ Show that, if f is continuous at 0, then $\int_{-\infty}^{+\infty} f(x) \, dH(x) = f(0).$

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Lebesgue Integral

We start with simple functions.

Definition

A function has *finite support* if it vanishes outside a finite interval.

Definition

i=1

Let ϕ be a measurable simple function with finite support. If

$$\phi(x) = \sum a_i \chi_{A_i}(x)$$
 is a representation of ϕ , then

$$\int \phi(x) \, dx = \sum_{i=1}^n a_i \cdot \mu(A_i)$$

Definition

If *E* is a measurable set, then $\int_E \phi = \int \phi \cdot \chi_E$.

1 5620: 140

Intro to Lebesgue Measure

Integral Linearity

Proposition

If ϕ and ψ are measurable simple functions with finite support and $a, b \in \mathbb{R}$, then $\int (a\phi + b\psi) = a \int \phi + b \int \psi$. Further, if $\phi \leq \psi$ a.e., then $\int \phi \leq \int \psi$.

Proof (sketch).

I. Let
$$\phi = \sum_{k=1}^{N} \alpha_i \chi_{A_i}$$
 and $\psi = \sum_{k=1}^{M} \beta_i \chi_{B_i}$. Then show $a\phi + b\psi$ can be
written as $a\phi + b\psi = \sum_{k=1}^{K} (a\alpha_{k_i} + b\beta_{k_j})\chi_{E_k}$ for the properly chosen E_k .
Set A_0 and B_0 to be zero sets of ϕ and ψ . (Take
 $\{E_k : k = 0..K\} = \{A_j \cap B_k : j = 0..N, k = 0..M\}$.)
II. Use the definition to show $\int \psi - \int \phi = \int (\psi - \phi) \ge \int 0 = 0$.

Steps to the Lebesgue Integral

Multiple Integration

Proposition

Vector Calculus

Let f be bounded on $E \in \mathfrak{M}$ with $\mu(E) < \infty$. Then f is measurable iff

$$\inf_{f \le \psi} \int_E \psi = \sup_{f \ge \phi} \int_E \phi$$

for all simple functions ϕ and ψ .

Proof.

I. Suppose f is bounded by M. Define

Functions of Two Variables

$$E_k = \left\{ x : \frac{k-1}{n} M < f(x) \le \frac{k}{n} M \right\}, \qquad -n \le k \le n$$

The E_k are measurable, disjoint, and have union E. Set

$$\psi_n(x) = \frac{M}{n} \sum_{-n}^n k \, \chi_{E_k}(x), \qquad \phi_n(x) = \frac{M}{n} \sum_{-n}^n (k-1) \, \chi_{E_k}(x)$$

SLI (cont)

(proof cont).

Then $\phi_n(x) \leq f(x) \leq \psi(x)$, and so

•
$$\inf \int_{E} \psi \leq \int_{E} \psi_{n} = \frac{M}{n} \sum_{k=-n}^{n} k \mu(E_{k})$$

• $\sup \int \phi \geq \int \phi_{n} = \frac{M}{n} \sum_{k=-n}^{n} (k-1) \mu(E_{k})$

•
$$\sup \int_E \phi \ge \int_E \phi_n = \frac{M}{n} \sum_{k=-n} (k-1) \mu(E_k)$$

Thus $0 \le \inf \int_E \psi - \sup \int_E \phi \le \frac{M}{n} \mu(E)$. Since *n* is arbitrary, equality holds.

II. Suppose that $\inf \int_E \psi = \sup \int_E \phi$. Choose ϕ_n and ψ_n so that $\phi_n \leq f \leq \psi_n$ and $\int_E (\psi_n - \phi_n) < \frac{1}{n}$. The functions $\psi^* = \inf \psi_n$ and $\phi^* = \sup \phi_n$ are measurable and $\phi^* \leq f \leq \psi^*$. The set $\Delta = \{x : \phi^*(x) < \psi^*(x)\}$ has measure 0. Thus $\phi^* = \psi^*$ almost everywhere, so $\phi^* = f$ a.e. Hence f is measurable.

MAT 5620: 143

Defining the Lebesgue Integral

Definition

If *f* is a bounded measurable function on a measurable set *E* with $m(E) < \infty$, then

$$\int_E f = \inf_{\psi \ge f} \int_E \psi$$

for all simple functions $\psi \ge f$.

Proposition

Let *f* be a bounded function defined on E = [a, b]. If *f* is Riemann integrable on [a, b], then *f* is measurable on [a, b] and

$$\int_E f = \int_a^b f(x) \, dx;$$

the Riemann integral of f equals the Lebesgue integral of f.

MAT 5620: 145

Intro to Lebesgue Measure

Properties of the Lebesgue Integral

Multiple Integration

Proposition

If f and g are measurable on E, a set of finite measure, then

•
$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

• if $f = g$ a.e., then $\int_{E} f = \int_{E} g$

Functions of Two Variables

• if
$$f \leq g$$
 a.e., then $\int_E f \leq \int_E g$

•
$$\left| \int_{E} f \right| \leq \int_{E} |f|$$

• if $a \leq f \leq b$, then $a \cdot \mu(E) \leq \int_{E} f \leq b \cdot \mu(E)$
• if $A \in B$, then $\int_{E} f = \int_{E} f \leq b \cdot \mu(E)$

• if
$$A \cap B = \emptyset$$
, then $\int_{A \cup B} f = \int_A f + \int_B f$

Lebesgue Integral Examples

Examples

1. Let
$$T(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$
. Then $\int_{[0,1]} T = \int_0^1 T(x) \, dx$.
2. Let $\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Then $\int_{[0,1]} \chi_{\mathbb{Q}} \neq \int_0^1 \chi_{\mathbb{Q}}(x) \, dx$.
3. Define

$$f_n(x) = \sum_{k=1}^{n+1} \left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right]}(x) \right) + \frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x).$$

Then

3.1 f_n is a step function, hence integrable 3.2 f'(x) = 0.2.9

3.2
$$f_n(x) = 0$$
 a.e.
3.3 $\frac{1}{4} \le \int_{[0,1]} f_n = \int_0^1 f_n(x) \, dx < \frac{3}{8}$

Functions of Two Variables

MAT 5620: 147

Intro to Lebesgue Measure

Extending the Integral Definition

Multiple Integration

Definition

Vector Calculus

Let f be a nonnegative measurable function defined on a measurable set E. Define

$$f = \sup_{h \le f} \int_E h$$

where h is a bounded measurable function with finite support.

ſ

Proposition

If f and g are nonnegative measurable functions, then

•
$$\int_E c f = c \int_E f$$
 for $c > 0$
• $\int_E f + a = \int_E f + \int_C a$

•
$$\int_E f + g = \int_E f + \int_E g$$

• If
$$f \leq g$$
 a.e., then $\int_E f \leq \int_E g$

General Lebesgue's Integral

Definition

Set $f^+(x) = \max\{f(x), 0\}$ and $f^-(x) = \max\{-f(x), 0\}$. Then $f = f^+ - f^$ and $|f| = f^+ + f^-$. A measurable function f is integrable over E iff both f^+ and f^- are integrable over E, and then $\int_E f = \int_E f^+ - \int_E f^-$.

Proposition

Let f and g be integrable over E and let $c \in \mathbb{R}$. Then

1.
$$\int_{E} cf = c \int_{E} f$$

2.
$$\int_{E} f + g = \int_{E} f + \int_{E} g$$

3. if $f \leq g$ a.e., then $\int_{E} f \leq \int_{E} g$
4. if A, B are disjoint m'ble subsets of $E, \int_{A \cup B} f = \int_{A} f + \int_{B} f$

MAT 5620: 149

Intro to Lebesgue Measure

Convergence Theorems

Multiple Integration

Theorem (Bounded Convergence Theorem)

Functions of Two Variables

Let $\{f_n : E \to \mathbb{R}\}\$ be a sequence of measurable functions converging to f with $m(E) < \infty$. If there is a uniform bound M for all f_n , then

$$\int_E \lim_n f_n = \lim_n \int_E f_n$$

Proof (sketch).

Let $\epsilon > 0$.

1. f_n converges "almost uniformly;" i.e., $\exists A, N$ s.t. $m(A) < \frac{\epsilon}{4M}$ and, for $n > N, x \in E - A \implies |f_n(x) - f(x)| \le \frac{\epsilon}{2m(E)}$. 2. $\left| \int_E f_n - \int_E f \right| = \left| \int_E f_n - f \right| \le \int_E |f_n - f| = \left(\int_{E-A} + \int_A \right) |f_n - f|$

3.
$$\int_{E-A} |f_n - f| + \int_A |f_n| + |f| \le \frac{\epsilon}{2m(E)} \cdot m(E) + 2M \cdot \frac{\epsilon}{4M} = \epsilon$$

MAT 5620: 150

Lebesgue's Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let $\{f_n : E \to \mathbb{R}\}$ be a sequence of measurable functions converging a.e. on E with $m(E) < \infty$. If there is an integrable function g on E such that $|f_n| \le g$ then

$$\int_E \lim_n f_n = \lim_n \int_E f_n$$

Lemma

Under the conditions of the DCT, set $g_n = \sup_{k \ge n} \{f_n, f_{n+1}, ...\}$ and $h_n = \inf_{k \ge n} \{f_n, f_{n+1}, ...\}$. Then g_n and h_n are integrable and $\lim g_n = f = \lim h_n$ a.e.

Proof of DCT (sketch).

- Both g_n and h_n are monotone and converging. Apply MCT.
- $h_n \leq f_n \leq g_n \implies \int_E h_n \leq \int_E f_n \leq \int_E g_n$.

MAT 5620: 151

(4.2) (2.2)

MAT 5620: 152

Sidebar: Littlewood's Three Principles

John Edensor Littlewood said,

The extent of knowledge required is nothing so great as sometimes supposed. There are three principles, roughly expressible in the following terms:

- every measurable set is nearly a finite union of intervals;
- every measurable function is nearly continuous;
- every convergent sequence of measurable functions is nearly uniformly convergent.

Most of the results of analysis are fairly intuitive applications of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.

MAT 5620: 153

1	- A	0-1	and the	

Multiple Integration

Intro to Lebesgue Measure

Extensions of Convergence

The sequence f_n converges to $f \ldots$

Definition (Convergence Almost Everywhere)

almost everywhere if $m(\{x : f_n(x) \not\rightarrow f(x)\}) = 0.$

Functions of Two Variables

Definition (Convergence Almost Uniformly)

almost uniformly on *E* if, for any $\epsilon > 0$, there is a set $A \subset E$ with $m(A) < \epsilon$ so that f_n converges uniformly on E - A.

Definition (Convergence in Measure)

in measure if, for any $\epsilon > 0$, $\lim_{n \to \infty} m\left(\{x : |f_n(x) - f(x)| \ge \epsilon\}\right) = 0.$

Definition (Convergence in Mean (of order p > 1))

in mean if
$$\lim_{n \to \infty} \|f_n - f\|_p = \lim_{n \to \infty} \left[\int_E |f - f_n|^p \right]^{1/p} = 0$$

MAT 5620: 154

Integrated Exercises

Exercises

- 1. Prove: If f is integrable on E, then |f| is integrable on E.
- 2. Prove: If f is integrable over E, then $\left| \int_{E} f \right| \leq \int_{E} |f|$.
- 3. True or False: If |f| is integrable over E, then f is integrable over E.
- 4. Let *f* be integrable over *E*. For any $\epsilon > 0$, there is a simple (resp. step) function ϕ (resp. ψ) such that $\int_{E} |f \phi| < \epsilon$.
- 5. For $n = k + 2^{\nu}, 0 \le k < 2^{\nu}$, define $f_n = \chi_{[k2^{-\nu}, (k+1)2^{-\nu}]}$.
 - 5.1 Show that f_n does not converge for any $x \in [0, 1]$.
 - 5.2 Show that f_n does not converge a.e. on [0, 1].
 - 5.3 Show that f_n does not converge almost uniformly on [0, 1].
 - 5.4 Show that $f_n \rightarrow 0$ in measure.
 - 5.5 Show that $f_n \rightarrow 0$ in mean (of order 2).

MAT 5620: 155

Texts on analysis, integration, and measure:

- Mathematical Analysis, T. Apostle
- Principles of Mathematical Analysis, W. Rudin
- Real Analysis, H. Royden
- Lebesgue Integration, S. Chae
- Geometric Measure Theory, F. Morgan

Comparison of different types of integrals:

- A Garden of Integrals, F Burk
- Integral, Measure, and Derivative: A Unified Approach, G. Shilov and B. Gurevich